L(s) = 1 | − i·2-s + 0.252·3-s − 4-s − 1.14i·5-s − 0.252i·6-s + i·7-s + i·8-s − 2.93·9-s − 1.14·10-s + 4.44i·11-s − 0.252·12-s + 14-s − 0.290i·15-s + 16-s − 2.70·17-s + 2.93i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.145·3-s − 0.5·4-s − 0.513i·5-s − 0.103i·6-s + 0.377i·7-s + 0.353i·8-s − 0.978·9-s − 0.362·10-s + 1.34i·11-s − 0.0729·12-s + 0.267·14-s − 0.0749i·15-s + 0.250·16-s − 0.657·17-s + 0.692i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.487364340\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.487364340\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 7 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 0.252T + 3T^{2} \) |
| 5 | \( 1 + 1.14iT - 5T^{2} \) |
| 11 | \( 1 - 4.44iT - 11T^{2} \) |
| 17 | \( 1 + 2.70T + 17T^{2} \) |
| 19 | \( 1 + 6.56iT - 19T^{2} \) |
| 23 | \( 1 - 2.07T + 23T^{2} \) |
| 29 | \( 1 - 7.19T + 29T^{2} \) |
| 31 | \( 1 - 7.90iT - 31T^{2} \) |
| 37 | \( 1 + 9.64iT - 37T^{2} \) |
| 41 | \( 1 + 9.49iT - 41T^{2} \) |
| 43 | \( 1 - 3.40T + 43T^{2} \) |
| 47 | \( 1 + 1.67iT - 47T^{2} \) |
| 53 | \( 1 - 13.2T + 53T^{2} \) |
| 59 | \( 1 + 0.0677iT - 59T^{2} \) |
| 61 | \( 1 - 8.10T + 61T^{2} \) |
| 67 | \( 1 + 0.513iT - 67T^{2} \) |
| 71 | \( 1 + 10.7iT - 71T^{2} \) |
| 73 | \( 1 + 8.02iT - 73T^{2} \) |
| 79 | \( 1 - 10.7T + 79T^{2} \) |
| 83 | \( 1 - 15.3iT - 83T^{2} \) |
| 89 | \( 1 - 10.8iT - 89T^{2} \) |
| 97 | \( 1 + 2.12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.003113195907032129896644344284, −8.424596732711086745308792421808, −7.26651699099109485456105482764, −6.59132564536114227013983556530, −5.24849792917729782556914882601, −4.93245947579326074076993547009, −3.92183269870989059169814943254, −2.71657066374075656393025839624, −2.17305803949644031019977878960, −0.67718520280646676076604458040,
0.882344115169576746490657376685, 2.65768752489308381071397043541, 3.39370992819842944214358951443, 4.35084016915458352585334712949, 5.43051391438848818127626991087, 6.16167846785977938850205395541, 6.64097908299546008710956503536, 7.71327101718496921864712108599, 8.371395890063825378612763241356, 8.771828717724474106205928485235