L(s) = 1 | + (0.173 + 0.300i)2-s + (0.439 − 0.761i)4-s + (−0.173 − 0.300i)7-s + 0.652·8-s + (0.766 + 1.32i)11-s + (−0.766 + 1.32i)13-s + (0.0603 − 0.104i)14-s + (−0.326 − 0.565i)16-s + 1.87·17-s + (−0.266 + 0.460i)22-s + (−0.5 − 0.866i)25-s − 0.532·26-s − 0.305·28-s + (0.5 + 0.866i)29-s + (0.439 − 0.761i)32-s + ⋯ |
L(s) = 1 | + (0.173 + 0.300i)2-s + (0.439 − 0.761i)4-s + (−0.173 − 0.300i)7-s + 0.652·8-s + (0.766 + 1.32i)11-s + (−0.766 + 1.32i)13-s + (0.0603 − 0.104i)14-s + (−0.326 − 0.565i)16-s + 1.87·17-s + (−0.266 + 0.460i)22-s + (−0.5 − 0.866i)25-s − 0.532·26-s − 0.305·28-s + (0.5 + 0.866i)29-s + (0.439 − 0.761i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.552304135\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.552304135\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 1.87T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + 1.53T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.574662895076812921844397251110, −8.323422910684662018532065596855, −7.31338095099300864898628147474, −6.91452978289678888242878716852, −6.24352678200498750626368114292, −5.16520161464829599761571265908, −4.59919316881294679288271569022, −3.61133162486075192485793032145, −2.20364055305636040754759168336, −1.39374677912564903257679381272,
1.22261946604889817641663463973, 2.74584364361073270978424699473, 3.24201053608368482030496591714, 4.03410183034713769146601560649, 5.37014638333576410440864263689, 5.89239159347669700491338097888, 6.90035266086346253877236794232, 7.891277851768720449309637302977, 8.072671846802172619397432903018, 9.154447982151124951211517018420