L(s) = 1 | + (−1.23 − 1.86i)5-s + (−0.157 + 0.157i)7-s + 2.06i·11-s + (−0.707 − 0.707i)13-s + (−0.379 − 0.379i)17-s + 5.74i·19-s + (1.48 − 1.48i)23-s + (−1.92 + 4.61i)25-s − 1.06·29-s + 8.85·31-s + (0.487 + 0.0979i)35-s + (−0.221 + 0.221i)37-s − 1.85i·41-s + (3.87 + 3.87i)43-s + (−0.646 − 0.646i)47-s + ⋯ |
L(s) = 1 | + (−0.554 − 0.832i)5-s + (−0.0594 + 0.0594i)7-s + 0.622i·11-s + (−0.196 − 0.196i)13-s + (−0.0919 − 0.0919i)17-s + 1.31i·19-s + (0.309 − 0.309i)23-s + (−0.385 + 0.922i)25-s − 0.198·29-s + 1.59·31-s + (0.0824 + 0.0165i)35-s + (−0.0364 + 0.0364i)37-s − 0.288i·41-s + (0.590 + 0.590i)43-s + (−0.0943 − 0.0943i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.431961775\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.431961775\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.23 + 1.86i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (0.157 - 0.157i)T - 7iT^{2} \) |
| 11 | \( 1 - 2.06iT - 11T^{2} \) |
| 17 | \( 1 + (0.379 + 0.379i)T + 17iT^{2} \) |
| 19 | \( 1 - 5.74iT - 19T^{2} \) |
| 23 | \( 1 + (-1.48 + 1.48i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.06T + 29T^{2} \) |
| 31 | \( 1 - 8.85T + 31T^{2} \) |
| 37 | \( 1 + (0.221 - 0.221i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.85iT - 41T^{2} \) |
| 43 | \( 1 + (-3.87 - 3.87i)T + 43iT^{2} \) |
| 47 | \( 1 + (0.646 + 0.646i)T + 47iT^{2} \) |
| 53 | \( 1 + (-5.31 + 5.31i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.345T + 59T^{2} \) |
| 61 | \( 1 - 0.645T + 61T^{2} \) |
| 67 | \( 1 + (-7.32 + 7.32i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.07iT - 71T^{2} \) |
| 73 | \( 1 + (-2.76 - 2.76i)T + 73iT^{2} \) |
| 79 | \( 1 - 0.527iT - 79T^{2} \) |
| 83 | \( 1 + (-3.39 + 3.39i)T - 83iT^{2} \) |
| 89 | \( 1 - 14.3T + 89T^{2} \) |
| 97 | \( 1 + (9.21 - 9.21i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.984271898529820462884222387956, −8.142037395068798703691407399126, −7.69964316595719021535836646701, −6.72672497159788333306201941679, −5.82247991330678012499612635105, −4.93028016792282859580382135885, −4.28224860433470560089423396165, −3.35670307464350407840021721269, −2.11486640469294505266297531233, −0.893961030646840085729902234467,
0.66419507742820285713939636715, 2.36516243590262966465126401975, 3.13156113074183259085780500092, 4.04304197042825801922822235583, 4.92204008007608847544096279619, 5.97038606661157682584720382138, 6.76906393374987577517927850627, 7.30441157289088112321989419647, 8.207489505624511970814236490772, 8.866246260797458002893469491217