L(s) = 1 | + (2.17 + 0.520i)5-s + (−3.20 + 3.20i)7-s − 5.96i·11-s + (0.707 + 0.707i)13-s + (−1.36 − 1.36i)17-s − 5.65i·19-s + (1.98 − 1.98i)23-s + (4.45 + 2.26i)25-s − 0.153·29-s − 5.22·31-s + (−8.65 + 5.31i)35-s + (2.90 − 2.90i)37-s − 9.43i·41-s + (−5.30 − 5.30i)43-s + (6.90 + 6.90i)47-s + ⋯ |
L(s) = 1 | + (0.972 + 0.232i)5-s + (−1.21 + 1.21i)7-s − 1.79i·11-s + (0.196 + 0.196i)13-s + (−0.330 − 0.330i)17-s − 1.29i·19-s + (0.413 − 0.413i)23-s + (0.891 + 0.452i)25-s − 0.0285·29-s − 0.939·31-s + (−1.46 + 0.897i)35-s + (0.477 − 0.477i)37-s − 1.47i·41-s + (−0.809 − 0.809i)43-s + (1.00 + 1.00i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.574 + 0.818i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.574 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.570398428\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.570398428\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.17 - 0.520i)T \) |
| 13 | \( 1 + (-0.707 - 0.707i)T \) |
good | 7 | \( 1 + (3.20 - 3.20i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.96iT - 11T^{2} \) |
| 17 | \( 1 + (1.36 + 1.36i)T + 17iT^{2} \) |
| 19 | \( 1 + 5.65iT - 19T^{2} \) |
| 23 | \( 1 + (-1.98 + 1.98i)T - 23iT^{2} \) |
| 29 | \( 1 + 0.153T + 29T^{2} \) |
| 31 | \( 1 + 5.22T + 31T^{2} \) |
| 37 | \( 1 + (-2.90 + 2.90i)T - 37iT^{2} \) |
| 41 | \( 1 + 9.43iT - 41T^{2} \) |
| 43 | \( 1 + (5.30 + 5.30i)T + 43iT^{2} \) |
| 47 | \( 1 + (-6.90 - 6.90i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.36 + 2.36i)T - 53iT^{2} \) |
| 59 | \( 1 - 5.88T + 59T^{2} \) |
| 61 | \( 1 - 13.5T + 61T^{2} \) |
| 67 | \( 1 + (0.187 - 0.187i)T - 67iT^{2} \) |
| 71 | \( 1 - 10.1iT - 71T^{2} \) |
| 73 | \( 1 + (-8.37 - 8.37i)T + 73iT^{2} \) |
| 79 | \( 1 + 14.0iT - 79T^{2} \) |
| 83 | \( 1 + (-5.88 + 5.88i)T - 83iT^{2} \) |
| 89 | \( 1 + 5.27T + 89T^{2} \) |
| 97 | \( 1 + (9.27 - 9.27i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.039305906619932770983007065919, −8.479223798605014222788193475102, −6.97940282641940182710733140622, −6.52869768514398538081016514463, −5.62871252214295641188915917574, −5.38392728778635812015729432004, −3.76311640011975465189302061843, −2.85834834333035427877226631343, −2.32117164932657933744406734046, −0.56259717699531578750944632742,
1.21130187873197711924276066834, 2.21139131485271074125444288657, 3.45325819177989774041457350697, 4.23449417199510617244431662510, 5.15160430832256168775039611985, 6.13248912389033560963669378331, 6.79000115054822910584143305389, 7.37244717500883174073720973990, 8.333627392127590357809083876140, 9.494218687096617881801953305147