L(s) = 1 | + (2.01 − 0.967i)5-s + (3.08 − 3.08i)7-s + 0.249i·11-s + (−0.707 − 0.707i)13-s + (−5.12 − 5.12i)17-s + 1.73i·19-s + (2.74 − 2.74i)23-s + (3.12 − 3.90i)25-s + 1.33·29-s + 3.60·31-s + (3.23 − 9.20i)35-s + (0.612 − 0.612i)37-s + 4.09i·41-s + (−7.55 − 7.55i)43-s + (−4.43 − 4.43i)47-s + ⋯ |
L(s) = 1 | + (0.901 − 0.432i)5-s + (1.16 − 1.16i)7-s + 0.0753i·11-s + (−0.196 − 0.196i)13-s + (−1.24 − 1.24i)17-s + 0.397i·19-s + (0.573 − 0.573i)23-s + (0.625 − 0.780i)25-s + 0.248·29-s + 0.646·31-s + (0.546 − 1.55i)35-s + (0.100 − 0.100i)37-s + 0.639i·41-s + (−1.15 − 1.15i)43-s + (−0.647 − 0.647i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0637 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0637 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.248358315\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.248358315\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.01 + 0.967i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-3.08 + 3.08i)T - 7iT^{2} \) |
| 11 | \( 1 - 0.249iT - 11T^{2} \) |
| 17 | \( 1 + (5.12 + 5.12i)T + 17iT^{2} \) |
| 19 | \( 1 - 1.73iT - 19T^{2} \) |
| 23 | \( 1 + (-2.74 + 2.74i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.33T + 29T^{2} \) |
| 31 | \( 1 - 3.60T + 31T^{2} \) |
| 37 | \( 1 + (-0.612 + 0.612i)T - 37iT^{2} \) |
| 41 | \( 1 - 4.09iT - 41T^{2} \) |
| 43 | \( 1 + (7.55 + 7.55i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.43 + 4.43i)T + 47iT^{2} \) |
| 53 | \( 1 + (9.54 - 9.54i)T - 53iT^{2} \) |
| 59 | \( 1 - 1.05T + 59T^{2} \) |
| 61 | \( 1 - 8.93T + 61T^{2} \) |
| 67 | \( 1 + (3.67 - 3.67i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.24iT - 71T^{2} \) |
| 73 | \( 1 + (-10.5 - 10.5i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.35iT - 79T^{2} \) |
| 83 | \( 1 + (6.84 - 6.84i)T - 83iT^{2} \) |
| 89 | \( 1 + 7.38T + 89T^{2} \) |
| 97 | \( 1 + (-11.4 + 11.4i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.668927283645947550256220250845, −8.196514543725362541820866535874, −7.12208836262764099788354104302, −6.68413611440947192208955209976, −5.46006020907054149578524868507, −4.77985432602798467986859306088, −4.25014661375694878725053007947, −2.79807311585403445682960495654, −1.78572556496987381266641136086, −0.75721424499316034759943632258,
1.64380558701526234830226102576, 2.20918812413342646717876167859, 3.24460537486031950379321549929, 4.67270942245983180457955370086, 5.14814516598845891726463927026, 6.17349397839642864575605304835, 6.58810009629466737586724567982, 7.77883313179698516489459202446, 8.513124809328105050125763778136, 9.084805848250467359032436713985