L(s) = 1 | + (−2.15 + 0.583i)5-s + (−1.95 + 1.95i)7-s − 5.98i·11-s + (−0.707 − 0.707i)13-s + (3.87 + 3.87i)17-s + 0.340i·19-s + (5.93 − 5.93i)23-s + (4.31 − 2.51i)25-s − 1.93·29-s − 5.01·31-s + (3.08 − 5.36i)35-s + (−5.36 + 5.36i)37-s + 8.26i·41-s + (−1.30 − 1.30i)43-s + (9.14 + 9.14i)47-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.260i)5-s + (−0.739 + 0.739i)7-s − 1.80i·11-s + (−0.196 − 0.196i)13-s + (0.940 + 0.940i)17-s + 0.0781i·19-s + (1.23 − 1.23i)23-s + (0.863 − 0.503i)25-s − 0.358·29-s − 0.900·31-s + (0.520 − 0.906i)35-s + (−0.882 + 0.882i)37-s + 1.29i·41-s + (−0.198 − 0.198i)43-s + (1.33 + 1.33i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.119 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.119 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9118870549\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9118870549\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.15 - 0.583i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (1.95 - 1.95i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.98iT - 11T^{2} \) |
| 17 | \( 1 + (-3.87 - 3.87i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.340iT - 19T^{2} \) |
| 23 | \( 1 + (-5.93 + 5.93i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.93T + 29T^{2} \) |
| 31 | \( 1 + 5.01T + 31T^{2} \) |
| 37 | \( 1 + (5.36 - 5.36i)T - 37iT^{2} \) |
| 41 | \( 1 - 8.26iT - 41T^{2} \) |
| 43 | \( 1 + (1.30 + 1.30i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9.14 - 9.14i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.0960 + 0.0960i)T - 53iT^{2} \) |
| 59 | \( 1 + 0.114T + 59T^{2} \) |
| 61 | \( 1 + 6.89T + 61T^{2} \) |
| 67 | \( 1 + (5.13 - 5.13i)T - 67iT^{2} \) |
| 71 | \( 1 - 15.8iT - 71T^{2} \) |
| 73 | \( 1 + (-5.50 - 5.50i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.60iT - 79T^{2} \) |
| 83 | \( 1 + (-0.738 + 0.738i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.0T + 89T^{2} \) |
| 97 | \( 1 + (-5.79 + 5.79i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.870597823110625599642679855695, −8.512184225632180621159861488274, −7.74839150631862394840479124818, −6.78796333921538274590411221774, −6.04354472568896022201984707383, −5.39709133832732671477802756179, −4.18395248617841479366929858553, −3.21226810611970855875315139663, −2.87442770865019921246930321460, −0.979513080895891374244462070064,
0.39102814891464265859488220398, 1.81548995757013605203077596216, 3.24289932655424156106062368680, 3.86078914226152718892226643052, 4.79811351661231632781943334093, 5.44554080490869681154185507471, 6.98021778822419914619292752685, 7.23644500905909977717424005370, 7.68156195810818691713395947926, 9.113306325984695634098705319872