L(s) = 1 | + (0.707 − 0.707i)5-s + (0.0943 + 0.352i)7-s + (−0.741 + 2.76i)11-s + (2.55 − 2.54i)13-s + (2.67 − 4.63i)17-s + (−0.440 + 0.118i)19-s + (−4.23 − 7.33i)23-s − 1.00i·25-s + (−3.94 + 2.27i)29-s + (−5.97 − 5.97i)31-s + (0.315 + 0.182i)35-s + (8.63 + 2.31i)37-s + (4.92 + 1.31i)41-s + (3.85 + 2.22i)43-s + (1.40 + 1.40i)47-s + ⋯ |
L(s) = 1 | + (0.316 − 0.316i)5-s + (0.0356 + 0.133i)7-s + (−0.223 + 0.834i)11-s + (0.709 − 0.704i)13-s + (0.649 − 1.12i)17-s + (−0.101 + 0.0270i)19-s + (−0.883 − 1.52i)23-s − 0.200i·25-s + (−0.733 + 0.423i)29-s + (−1.07 − 1.07i)31-s + (0.0533 + 0.0308i)35-s + (1.41 + 0.380i)37-s + (0.769 + 0.206i)41-s + (0.587 + 0.339i)43-s + (0.204 + 0.204i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.450 + 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.450 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.750521299\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.750521299\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + (-2.55 + 2.54i)T \) |
good | 7 | \( 1 + (-0.0943 - 0.352i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (0.741 - 2.76i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.67 + 4.63i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.440 - 0.118i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (4.23 + 7.33i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.94 - 2.27i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.97 + 5.97i)T + 31iT^{2} \) |
| 37 | \( 1 + (-8.63 - 2.31i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-4.92 - 1.31i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-3.85 - 2.22i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.40 - 1.40i)T + 47iT^{2} \) |
| 53 | \( 1 - 9.32iT - 53T^{2} \) |
| 59 | \( 1 + (5.14 - 1.37i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.66 - 4.61i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.61 + 13.4i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (3.70 + 13.8i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-6.70 + 6.70i)T - 73iT^{2} \) |
| 79 | \( 1 - 8.79T + 79T^{2} \) |
| 83 | \( 1 + (-5.75 + 5.75i)T - 83iT^{2} \) |
| 89 | \( 1 + (-3.42 + 12.7i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-6.07 + 1.62i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.100677452747049099646371427110, −7.80744668392588431705177858836, −7.65435023264140713733208964401, −6.34996286482349012959022998216, −5.77752118557059126061894774680, −4.87019291799388365694346027848, −4.10641521373208610603092840706, −2.91613338452432162459395807885, −2.01399444909631802321436216591, −0.64416070819171608231152311217,
1.24532281069175602908983641557, 2.28109230840494915312204234422, 3.60100796607920125700732843022, 3.98126427509455692197513090822, 5.54368636197156052055714260885, 5.82419542745006597304292284145, 6.76267926721003460893402218763, 7.66825320136925526376957189914, 8.297892642554572758115143103345, 9.193442739643819667842015775813