L(s) = 1 | + (0.707 − 0.707i)5-s + (0.891 + 3.32i)7-s + (0.508 − 1.89i)11-s + (−2.17 − 2.87i)13-s + (−2.85 + 4.93i)17-s + (5.92 − 1.58i)19-s + (−2.03 − 3.52i)23-s − 1.00i·25-s + (3.49 − 2.01i)29-s + (6.96 + 6.96i)31-s + (2.98 + 1.72i)35-s + (6.75 + 1.80i)37-s + (8.34 + 2.23i)41-s + (1.37 + 0.793i)43-s + (−4.85 − 4.85i)47-s + ⋯ |
L(s) = 1 | + (0.316 − 0.316i)5-s + (0.336 + 1.25i)7-s + (0.153 − 0.572i)11-s + (−0.602 − 0.798i)13-s + (−0.691 + 1.19i)17-s + (1.35 − 0.363i)19-s + (−0.423 − 0.734i)23-s − 0.200i·25-s + (0.648 − 0.374i)29-s + (1.25 + 1.25i)31-s + (0.504 + 0.291i)35-s + (1.11 + 0.297i)37-s + (1.30 + 0.349i)41-s + (0.209 + 0.120i)43-s + (−0.707 − 0.707i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.325i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 - 0.325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.984617387\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.984617387\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + (2.17 + 2.87i)T \) |
good | 7 | \( 1 + (-0.891 - 3.32i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.508 + 1.89i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.85 - 4.93i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.92 + 1.58i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (2.03 + 3.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.49 + 2.01i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.96 - 6.96i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.75 - 1.80i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-8.34 - 2.23i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.37 - 0.793i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.85 + 4.85i)T + 47iT^{2} \) |
| 53 | \( 1 + 7.98iT - 53T^{2} \) |
| 59 | \( 1 + (-6.45 + 1.72i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (4.91 - 8.51i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.21 - 8.26i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-3.02 - 11.2i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (8.23 - 8.23i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.09T + 79T^{2} \) |
| 83 | \( 1 + (-10.5 + 10.5i)T - 83iT^{2} \) |
| 89 | \( 1 + (0.499 - 1.86i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.729 + 0.195i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.704482181521254669986831566208, −8.555524739006166697317083405859, −7.66575146758649449553904792197, −6.49645482949149582658498565239, −5.86285473721399722686936235749, −5.16943494977889371195695887240, −4.36053314525628501745545908706, −3.00879057124174871415408350249, −2.34888217435632862354218908144, −1.01537137757480683907752129871,
0.866449044743518513524384297884, 2.08391300418068948217810422471, 3.12211455251332456116509554575, 4.34145745324567787231937857588, 4.69313385524596934031207221310, 5.90393900811468486690769066387, 6.77745622368719607991836593618, 7.49580387648783228708470129470, 7.80149383350284602353961159757, 9.392500798200399193032737590427