L(s) = 1 | + (−0.707 + 0.707i)5-s + (0.891 + 3.32i)7-s + (−0.508 + 1.89i)11-s + (−2.17 − 2.87i)13-s + (2.85 − 4.93i)17-s + (5.92 − 1.58i)19-s + (2.03 + 3.52i)23-s − 1.00i·25-s + (−3.49 + 2.01i)29-s + (6.96 + 6.96i)31-s + (−2.98 − 1.72i)35-s + (6.75 + 1.80i)37-s + (−8.34 − 2.23i)41-s + (1.37 + 0.793i)43-s + (4.85 + 4.85i)47-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.316i)5-s + (0.336 + 1.25i)7-s + (−0.153 + 0.572i)11-s + (−0.602 − 0.798i)13-s + (0.691 − 1.19i)17-s + (1.35 − 0.363i)19-s + (0.423 + 0.734i)23-s − 0.200i·25-s + (−0.648 + 0.374i)29-s + (1.25 + 1.25i)31-s + (−0.504 − 0.291i)35-s + (1.11 + 0.297i)37-s + (−1.30 − 0.349i)41-s + (0.209 + 0.120i)43-s + (0.707 + 0.707i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00862 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00862 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.563103282\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.563103282\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (2.17 + 2.87i)T \) |
good | 7 | \( 1 + (-0.891 - 3.32i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (0.508 - 1.89i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.85 + 4.93i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.92 + 1.58i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.03 - 3.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.49 - 2.01i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.96 - 6.96i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.75 - 1.80i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (8.34 + 2.23i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.37 - 0.793i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.85 - 4.85i)T + 47iT^{2} \) |
| 53 | \( 1 - 7.98iT - 53T^{2} \) |
| 59 | \( 1 + (6.45 - 1.72i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (4.91 - 8.51i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.21 - 8.26i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (3.02 + 11.2i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (8.23 - 8.23i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.09T + 79T^{2} \) |
| 83 | \( 1 + (10.5 - 10.5i)T - 83iT^{2} \) |
| 89 | \( 1 + (-0.499 + 1.86i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.729 + 0.195i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.245852326922354075095557553908, −8.405874721595328421666188088008, −7.44385935404767630960675809807, −7.21884131126817259896377995881, −5.83483928018952566885323924334, −5.27218148348242176666398301172, −4.59946800737849134900617852465, −2.97493146751648139014914104223, −2.82791619412221425132001460263, −1.25319687892956519501110556582,
0.59547571951228271172773415593, 1.67854868173856113111636536616, 3.12904453195284682054065988505, 4.02878458820065332444596401988, 4.62800746756828377087275872545, 5.64828083772376060057441593460, 6.51262559067037225053843788297, 7.49914292553519779457880552390, 7.86388211245832448100278678804, 8.682351653685303600156874948898