Properties

Label 2-2340-39.11-c1-0-6
Degree $2$
Conductor $2340$
Sign $0.00862 - 0.999i$
Analytic cond. $18.6849$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)5-s + (0.891 + 3.32i)7-s + (−0.508 + 1.89i)11-s + (−2.17 − 2.87i)13-s + (2.85 − 4.93i)17-s + (5.92 − 1.58i)19-s + (2.03 + 3.52i)23-s − 1.00i·25-s + (−3.49 + 2.01i)29-s + (6.96 + 6.96i)31-s + (−2.98 − 1.72i)35-s + (6.75 + 1.80i)37-s + (−8.34 − 2.23i)41-s + (1.37 + 0.793i)43-s + (4.85 + 4.85i)47-s + ⋯
L(s)  = 1  + (−0.316 + 0.316i)5-s + (0.336 + 1.25i)7-s + (−0.153 + 0.572i)11-s + (−0.602 − 0.798i)13-s + (0.691 − 1.19i)17-s + (1.35 − 0.363i)19-s + (0.423 + 0.734i)23-s − 0.200i·25-s + (−0.648 + 0.374i)29-s + (1.25 + 1.25i)31-s + (−0.504 − 0.291i)35-s + (1.11 + 0.297i)37-s + (−1.30 − 0.349i)41-s + (0.209 + 0.120i)43-s + (0.707 + 0.707i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00862 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00862 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $0.00862 - 0.999i$
Analytic conductor: \(18.6849\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2340} (1961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :1/2),\ 0.00862 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.563103282\)
\(L(\frac12)\) \(\approx\) \(1.563103282\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.707 - 0.707i)T \)
13 \( 1 + (2.17 + 2.87i)T \)
good7 \( 1 + (-0.891 - 3.32i)T + (-6.06 + 3.5i)T^{2} \)
11 \( 1 + (0.508 - 1.89i)T + (-9.52 - 5.5i)T^{2} \)
17 \( 1 + (-2.85 + 4.93i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-5.92 + 1.58i)T + (16.4 - 9.5i)T^{2} \)
23 \( 1 + (-2.03 - 3.52i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.49 - 2.01i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + (-6.96 - 6.96i)T + 31iT^{2} \)
37 \( 1 + (-6.75 - 1.80i)T + (32.0 + 18.5i)T^{2} \)
41 \( 1 + (8.34 + 2.23i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (-1.37 - 0.793i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (-4.85 - 4.85i)T + 47iT^{2} \)
53 \( 1 - 7.98iT - 53T^{2} \)
59 \( 1 + (6.45 - 1.72i)T + (51.0 - 29.5i)T^{2} \)
61 \( 1 + (4.91 - 8.51i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.21 - 8.26i)T + (-58.0 - 33.5i)T^{2} \)
71 \( 1 + (3.02 + 11.2i)T + (-61.4 + 35.5i)T^{2} \)
73 \( 1 + (8.23 - 8.23i)T - 73iT^{2} \)
79 \( 1 + 7.09T + 79T^{2} \)
83 \( 1 + (10.5 - 10.5i)T - 83iT^{2} \)
89 \( 1 + (-0.499 + 1.86i)T + (-77.0 - 44.5i)T^{2} \)
97 \( 1 + (-0.729 + 0.195i)T + (84.0 - 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.245852326922354075095557553908, −8.405874721595328421666188088008, −7.44385935404767630960675809807, −7.21884131126817259896377995881, −5.83483928018952566885323924334, −5.27218148348242176666398301172, −4.59946800737849134900617852465, −2.97493146751648139014914104223, −2.82791619412221425132001460263, −1.25319687892956519501110556582, 0.59547571951228271172773415593, 1.67854868173856113111636536616, 3.12904453195284682054065988505, 4.02878458820065332444596401988, 4.62800746756828377087275872545, 5.64828083772376060057441593460, 6.51262559067037225053843788297, 7.49914292553519779457880552390, 7.86388211245832448100278678804, 8.682351653685303600156874948898

Graph of the $Z$-function along the critical line