L(s) = 1 | + (0.707 + 0.707i)5-s + (1.29 − 4.83i)7-s + (−1.26 − 4.72i)11-s + (3.20 − 1.65i)13-s + (−1.47 − 2.55i)17-s + (3.97 + 1.06i)19-s + (−0.451 + 0.782i)23-s + 1.00i·25-s + (−4.66 − 2.69i)29-s + (−4.05 + 4.05i)31-s + (4.33 − 2.50i)35-s + (−4.50 + 1.20i)37-s + (−6.53 + 1.74i)41-s + (5.10 − 2.94i)43-s + (−3.65 + 3.65i)47-s + ⋯ |
L(s) = 1 | + (0.316 + 0.316i)5-s + (0.489 − 1.82i)7-s + (−0.381 − 1.42i)11-s + (0.888 − 0.458i)13-s + (−0.357 − 0.620i)17-s + (0.912 + 0.244i)19-s + (−0.0941 + 0.163i)23-s + 0.200i·25-s + (−0.865 − 0.499i)29-s + (−0.727 + 0.727i)31-s + (0.732 − 0.422i)35-s + (−0.740 + 0.198i)37-s + (−1.01 + 0.273i)41-s + (0.778 − 0.449i)43-s + (−0.532 + 0.532i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.426 + 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.426 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.692770467\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.692770467\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + (-3.20 + 1.65i)T \) |
good | 7 | \( 1 + (-1.29 + 4.83i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (1.26 + 4.72i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (1.47 + 2.55i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.97 - 1.06i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.451 - 0.782i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.66 + 2.69i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.05 - 4.05i)T - 31iT^{2} \) |
| 37 | \( 1 + (4.50 - 1.20i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (6.53 - 1.74i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-5.10 + 2.94i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.65 - 3.65i)T - 47iT^{2} \) |
| 53 | \( 1 - 9.56iT - 53T^{2} \) |
| 59 | \( 1 + (8.99 + 2.40i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.81 - 4.86i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.99 + 7.44i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-2.55 + 9.55i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (3.73 + 3.73i)T + 73iT^{2} \) |
| 79 | \( 1 - 9.42T + 79T^{2} \) |
| 83 | \( 1 + (-10.7 - 10.7i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.43 - 9.07i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (3.38 + 0.908i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.667842145245319413050989234852, −7.81750510042862965675216733846, −7.35831066960554895777891071084, −6.42983648394233801329160542742, −5.62691797116639731824952078740, −4.76520000453619945129987319535, −3.61964723056827471228999607713, −3.21979033922632254909558632913, −1.56797956548190633746465127602, −0.56936024968224036452861685009,
1.76742093394310229242937915982, 2.16096764376733059097460067156, 3.47626324787892233825290112883, 4.66709772341705221198848060990, 5.31796178038244288009540787177, 5.95022674401104440578050826076, 6.88293314154589071983942022362, 7.82228139758997803870377518304, 8.629463494391356165842288342336, 9.148396458703419679699615700961