L(s) = 1 | + (−0.707 + 0.707i)5-s + (2.39 − 2.39i)7-s + (1.91 + 1.91i)11-s + (2.69 + 2.39i)13-s + 1.97·17-s + (2 + 2i)19-s − 7.21·23-s − 1.00i·25-s − 2.41i·29-s + (4.79 + 4.79i)31-s + 3.39i·35-s + (0.692 − 0.692i)37-s + (−4.86 + 4.86i)41-s − 11.0i·43-s + (7.21 + 7.21i)47-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.316i)5-s + (0.906 − 0.906i)7-s + (0.576 + 0.576i)11-s + (0.746 + 0.665i)13-s + 0.479·17-s + (0.458 + 0.458i)19-s − 1.50·23-s − 0.200i·25-s − 0.447i·29-s + (0.861 + 0.861i)31-s + 0.573i·35-s + (0.113 − 0.113i)37-s + (−0.760 + 0.760i)41-s − 1.67i·43-s + (1.05 + 1.05i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.032334358\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.032334358\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (-2.69 - 2.39i)T \) |
good | 7 | \( 1 + (-2.39 + 2.39i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1.91 - 1.91i)T + 11iT^{2} \) |
| 17 | \( 1 - 1.97T + 17T^{2} \) |
| 19 | \( 1 + (-2 - 2i)T + 19iT^{2} \) |
| 23 | \( 1 + 7.21T + 23T^{2} \) |
| 29 | \( 1 + 2.41iT - 29T^{2} \) |
| 31 | \( 1 + (-4.79 - 4.79i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.692 + 0.692i)T - 37iT^{2} \) |
| 41 | \( 1 + (4.86 - 4.86i)T - 41iT^{2} \) |
| 43 | \( 1 + 11.0iT - 43T^{2} \) |
| 47 | \( 1 + (-7.21 - 7.21i)T + 47iT^{2} \) |
| 53 | \( 1 + 0.0188iT - 53T^{2} \) |
| 59 | \( 1 + 59iT^{2} \) |
| 61 | \( 1 + 6.91T + 61T^{2} \) |
| 67 | \( 1 + (-3.38 - 3.38i)T + 67iT^{2} \) |
| 71 | \( 1 + (-3.90 + 3.90i)T - 71iT^{2} \) |
| 73 | \( 1 + (-3.09 + 3.09i)T - 73iT^{2} \) |
| 79 | \( 1 - 15.6T + 79T^{2} \) |
| 83 | \( 1 + (-0.563 + 0.563i)T - 83iT^{2} \) |
| 89 | \( 1 + (-9.11 - 9.11i)T + 89iT^{2} \) |
| 97 | \( 1 + (0.103 + 0.103i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.989742076870886054010711288660, −8.062570240014059818472511406944, −7.62868938002279940790228682756, −6.76251923528092118421221758083, −6.05078409948692781714787954951, −4.89168454460203146138780617776, −4.12060735607655627769305462544, −3.54579669657003061357751104719, −2.03980516421781238296375450159, −1.10586543736400547055488718829,
0.871417268226724720676076712630, 2.02336534518584650297919908448, 3.20188513007646359223996106303, 4.08332050397982825584108586448, 5.07975960103753605198948966628, 5.74919833442308218566116623395, 6.45213458679836175599080623733, 7.72433669018580683868024432558, 8.187824682012725258950956741791, 8.789567426371392224531490624910