L(s) = 1 | + (−0.707 − 0.707i)5-s + (2.50 + 2.50i)7-s + (−1.31 + 1.31i)11-s + (1.64 + 3.20i)13-s − 3.11·17-s − 3.74·23-s + 1.00i·25-s + 4.03i·29-s + (−3.29 + 3.29i)31-s − 3.54i·35-s + (−2.94 − 2.94i)37-s + (0.525 + 0.525i)41-s + 0.288i·43-s + (−1.90 + 1.90i)47-s + 5.55i·49-s + ⋯ |
L(s) = 1 | + (−0.316 − 0.316i)5-s + (0.947 + 0.947i)7-s + (−0.395 + 0.395i)11-s + (0.457 + 0.889i)13-s − 0.756·17-s − 0.781·23-s + 0.200i·25-s + 0.749i·29-s + (−0.592 + 0.592i)31-s − 0.598i·35-s + (−0.484 − 0.484i)37-s + (0.0821 + 0.0821i)41-s + 0.0439i·43-s + (−0.278 + 0.278i)47-s + 0.793i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.564 - 0.825i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.116515330\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.116515330\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-1.64 - 3.20i)T \) |
good | 7 | \( 1 + (-2.50 - 2.50i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.31 - 1.31i)T - 11iT^{2} \) |
| 17 | \( 1 + 3.11T + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 3.74T + 23T^{2} \) |
| 29 | \( 1 - 4.03iT - 29T^{2} \) |
| 31 | \( 1 + (3.29 - 3.29i)T - 31iT^{2} \) |
| 37 | \( 1 + (2.94 + 2.94i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.525 - 0.525i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.288iT - 43T^{2} \) |
| 47 | \( 1 + (1.90 - 1.90i)T - 47iT^{2} \) |
| 53 | \( 1 + 11.4iT - 53T^{2} \) |
| 59 | \( 1 + (5.24 - 5.24i)T - 59iT^{2} \) |
| 61 | \( 1 + 4.04T + 61T^{2} \) |
| 67 | \( 1 + (3.01 - 3.01i)T - 67iT^{2} \) |
| 71 | \( 1 + (-1.10 - 1.10i)T + 71iT^{2} \) |
| 73 | \( 1 + (-5.26 - 5.26i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.75T + 79T^{2} \) |
| 83 | \( 1 + (2.55 + 2.55i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.09 - 1.09i)T - 89iT^{2} \) |
| 97 | \( 1 + (-4.66 + 4.66i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.911786811888655183077201874534, −8.685416704734005499337823544054, −7.81215729520387626622559179829, −7.00735525155338297667252148080, −6.08310780205112341027251095543, −5.18056316476637517658435756005, −4.59883560090267966464318922454, −3.64362389015615023235379468523, −2.31355981957411568101802253437, −1.58366534634477908255822078751,
0.36800061843983229353483439457, 1.70387467559961413143476418293, 2.93211451414692583326426286721, 3.91908596018754210692512192588, 4.59276830828834099353051802661, 5.59144458919881181208498939574, 6.39630297180669397022223645974, 7.40407112975803254308990855649, 7.916086545613978664392440928226, 8.477294564258073985618368357675