Properties

Label 2-2340-1.1-c1-0-9
Degree $2$
Conductor $2340$
Sign $1$
Analytic cond. $18.6849$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4.17·7-s + 5.52·11-s + 13-s + 0.703·17-s + 6.82·19-s + 2.64·23-s + 25-s − 8.17·29-s − 9.52·31-s − 4.17·35-s − 6.87·37-s − 0.703·41-s − 1.35·43-s + 8.17·47-s + 10.4·49-s − 5.04·53-s − 5.52·55-s + 12.2·59-s − 0.172·61-s − 65-s + 10.8·67-s + 5.52·71-s − 11.2·73-s + 23.0·77-s + 1.29·79-s + 9.58·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.57·7-s + 1.66·11-s + 0.277·13-s + 0.170·17-s + 1.56·19-s + 0.552·23-s + 0.200·25-s − 1.51·29-s − 1.71·31-s − 0.705·35-s − 1.13·37-s − 0.109·41-s − 0.206·43-s + 1.19·47-s + 1.48·49-s − 0.693·53-s − 0.744·55-s + 1.59·59-s − 0.0220·61-s − 0.124·65-s + 1.32·67-s + 0.655·71-s − 1.31·73-s + 2.62·77-s + 0.145·79-s + 1.05·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.6849\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.352873817\)
\(L(\frac12)\) \(\approx\) \(2.352873817\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 - 4.17T + 7T^{2} \)
11 \( 1 - 5.52T + 11T^{2} \)
17 \( 1 - 0.703T + 17T^{2} \)
19 \( 1 - 6.82T + 19T^{2} \)
23 \( 1 - 2.64T + 23T^{2} \)
29 \( 1 + 8.17T + 29T^{2} \)
31 \( 1 + 9.52T + 31T^{2} \)
37 \( 1 + 6.87T + 37T^{2} \)
41 \( 1 + 0.703T + 41T^{2} \)
43 \( 1 + 1.35T + 43T^{2} \)
47 \( 1 - 8.17T + 47T^{2} \)
53 \( 1 + 5.04T + 53T^{2} \)
59 \( 1 - 12.2T + 59T^{2} \)
61 \( 1 + 0.172T + 61T^{2} \)
67 \( 1 - 10.8T + 67T^{2} \)
71 \( 1 - 5.52T + 71T^{2} \)
73 \( 1 + 11.2T + 73T^{2} \)
79 \( 1 - 1.29T + 79T^{2} \)
83 \( 1 - 9.58T + 83T^{2} \)
89 \( 1 + 11.7T + 89T^{2} \)
97 \( 1 - 18.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.008743273665653353581885371984, −8.222475729931087775448286941630, −7.39700467908422568410746712565, −6.94830021082220756603381757969, −5.63272866520891903977752982745, −5.10914575956725825283776330417, −4.02221510137209967852801267034, −3.49324100677638905982521516143, −1.88028873824518586110939663863, −1.11690548439760951688231015451, 1.11690548439760951688231015451, 1.88028873824518586110939663863, 3.49324100677638905982521516143, 4.02221510137209967852801267034, 5.10914575956725825283776330417, 5.63272866520891903977752982745, 6.94830021082220756603381757969, 7.39700467908422568410746712565, 8.222475729931087775448286941630, 9.008743273665653353581885371984

Graph of the $Z$-function along the critical line