L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00i·10-s − 13-s − 1.00·16-s + (−1.41 + 1.41i)17-s + (−0.707 + 0.707i)20-s + 1.00i·25-s + (−0.707 − 0.707i)26-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 2.00·34-s + (1 − i)37-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00i·10-s − 13-s − 1.00·16-s + (−1.41 + 1.41i)17-s + (−0.707 + 0.707i)20-s + 1.00i·25-s + (−0.707 − 0.707i)26-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 2.00·34-s + (1 − i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.709093111\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.709093111\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.265064264862928610265295698414, −8.632332746845859127006770126816, −7.66350646484455311833333029559, −7.01066306601757648089942576097, −6.26221289577841511216967252075, −5.76111682455943732734931546728, −4.68478505993463051904074843986, −4.00582112486346243382547084672, −2.79356229032005110392469651048, −2.14592049679446770969536672138,
0.907488786209727316730007950170, 2.30513384733070205137195182861, 2.77180630588933270405723835382, 4.33803645540880965960298904238, 4.73920655161142613111988552854, 5.50725697215815301442372474380, 6.42079015610059934453004134586, 7.10013902701638260583374166155, 8.338845319710918141714374656375, 9.224037748194297572363805052947