Properties

Label 8-2340e4-1.1-c0e4-0-5
Degree $8$
Conductor $2.998\times 10^{13}$
Sign $1$
Analytic cond. $1.85990$
Root an. cond. $1.08065$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·13-s − 16-s + 4·37-s − 4·73-s + 4·97-s − 8·109-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4·13-s − 16-s + 4·37-s − 4·73-s + 4·97-s − 8·109-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + 211-s + 223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(1.85990\)
Root analytic conductor: \(1.08065\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6457699447\)
\(L(\frac12)\) \(\approx\) \(0.6457699447\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
13$C_1$ \( ( 1 + T )^{4} \)
good7$C_2^2$ \( ( 1 + T^{4} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + T^{4} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.50294492265515532921569527455, −6.42079015610059934453004134586, −6.26221289577841511216967252075, −5.86849156404465529247899925880, −5.76111682455943732734931546728, −5.50725697215815301442372474380, −5.42644942759043730688563123964, −4.90257690332917788093201432163, −4.76861709937762468948906299731, −4.73920655161142613111988552854, −4.68478505993463051904074843986, −4.33803645540880965960298904238, −4.00582112486346243382547084672, −3.90868668207991451019570444415, −3.74486610465797861744166082363, −2.98185927213182464138855572579, −2.83120276068323970914755691480, −2.79356229032005110392469651048, −2.77180630588933270405723835382, −2.30513384733070205137195182861, −2.14592049679446770969536672138, −1.76498917477933447539020768607, −1.51137226215006181899776792291, −0.907488786209727316730007950170, −0.41492668483403096388958338654, 0.41492668483403096388958338654, 0.907488786209727316730007950170, 1.51137226215006181899776792291, 1.76498917477933447539020768607, 2.14592049679446770969536672138, 2.30513384733070205137195182861, 2.77180630588933270405723835382, 2.79356229032005110392469651048, 2.83120276068323970914755691480, 2.98185927213182464138855572579, 3.74486610465797861744166082363, 3.90868668207991451019570444415, 4.00582112486346243382547084672, 4.33803645540880965960298904238, 4.68478505993463051904074843986, 4.73920655161142613111988552854, 4.76861709937762468948906299731, 4.90257690332917788093201432163, 5.42644942759043730688563123964, 5.50725697215815301442372474380, 5.76111682455943732734931546728, 5.86849156404465529247899925880, 6.26221289577841511216967252075, 6.42079015610059934453004134586, 6.50294492265515532921569527455

Graph of the $Z$-function along the critical line