L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.965 − 0.258i)5-s + (0.707 − 0.707i)8-s + (0.866 − 0.499i)10-s + (−0.866 − 0.5i)13-s + (0.500 − 0.866i)16-s + (−0.965 − 0.258i)17-s + (0.707 − 0.707i)20-s + (0.866 − 0.499i)25-s + (−0.965 − 0.258i)26-s + (−0.258 + 0.448i)29-s + (0.258 − 0.965i)32-s − 34-s + (0.5 + 1.86i)37-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.965 − 0.258i)5-s + (0.707 − 0.707i)8-s + (0.866 − 0.499i)10-s + (−0.866 − 0.5i)13-s + (0.500 − 0.866i)16-s + (−0.965 − 0.258i)17-s + (0.707 − 0.707i)20-s + (0.866 − 0.499i)25-s + (−0.965 − 0.258i)26-s + (−0.258 + 0.448i)29-s + (0.258 − 0.965i)32-s − 34-s + (0.5 + 1.86i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.462178695\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.462178695\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.965 + 0.258i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 - 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (0.965 - 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.266160589923601456523211934631, −8.300376580819603975089594757582, −7.26756505825088980668967175697, −6.53932437670378227096962824155, −5.85929980902519358887031026086, −4.95267706198385216558014496432, −4.54251606741308614482999287811, −3.15709764164150563705942974626, −2.45378368522655505216418956643, −1.40436854176327960303116178774,
1.96519854175137215162007772210, 2.47298462530004786320268287053, 3.70116110755786944808710433283, 4.55672987307466428271945642699, 5.41689766433682559216525610710, 6.03565988749367902015122391696, 6.92010203152529809646580607005, 7.32862131459865771201521953720, 8.499057843973269879029067294755, 9.260071747058135178125317424021