Properties

Label 8-2340e4-1.1-c0e4-0-17
Degree $8$
Conductor $2.998\times 10^{13}$
Sign $1$
Analytic cond. $1.85990$
Root an. cond. $1.08065$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 9-s + 4·17-s + 4·19-s − 2·23-s + 25-s + 2·43-s + 2·45-s + 2·59-s − 2·61-s − 4·71-s − 2·79-s + 2·83-s + 8·85-s − 4·89-s + 8·95-s − 2·97-s − 4·103-s + 4·109-s − 4·115-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2·5-s + 9-s + 4·17-s + 4·19-s − 2·23-s + 25-s + 2·43-s + 2·45-s + 2·59-s − 2·61-s − 4·71-s − 2·79-s + 2·83-s + 8·85-s − 4·89-s + 8·95-s − 2·97-s − 4·103-s + 4·109-s − 4·115-s − 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(1.85990\)
Root analytic conductor: \(1.08065\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.606932563\)
\(L(\frac12)\) \(\approx\) \(3.606932563\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
good7$C_2^3$ \( 1 - T^{4} + T^{8} \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
17$C_2$ \( ( 1 - T + T^{2} )^{4} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2^3$ \( 1 - T^{4} + T^{8} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2^3$ \( 1 - T^{4} + T^{8} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
47$C_2^3$ \( 1 - T^{4} + T^{8} \)
53$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_2^3$ \( 1 - T^{4} + T^{8} \)
71$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
73$C_2^2$ \( ( 1 + T^{4} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
83$C_2$$\times$$C_2^2$ \( ( 1 - T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.58868442508291220530219314533, −6.20498344693873524139999229300, −5.83002875426397754698990187127, −5.79070725236204426886621533244, −5.74418082480686659743647899497, −5.71612907731760073144472363523, −5.41811424919950636788680786496, −5.40915711808165841230478498160, −5.15678215541945683702455153714, −4.49378936853491655067481916825, −4.46007901636492515280245027392, −4.42855863092604703206565269037, −4.11407255206273657117370865233, −3.53684830785752280502333142290, −3.44174158920317113721553651336, −3.34184248842188063284839383277, −3.23757710751098721523879279006, −2.70456228909367643321662855237, −2.52090336197369662397391925419, −2.46978555447955656614222619564, −1.83610596099114313247774721518, −1.52338231724967475798673180325, −1.32797191860981369329311876430, −1.14412385779240633446498912733, −1.12215674077858600446124596234, 1.12215674077858600446124596234, 1.14412385779240633446498912733, 1.32797191860981369329311876430, 1.52338231724967475798673180325, 1.83610596099114313247774721518, 2.46978555447955656614222619564, 2.52090336197369662397391925419, 2.70456228909367643321662855237, 3.23757710751098721523879279006, 3.34184248842188063284839383277, 3.44174158920317113721553651336, 3.53684830785752280502333142290, 4.11407255206273657117370865233, 4.42855863092604703206565269037, 4.46007901636492515280245027392, 4.49378936853491655067481916825, 5.15678215541945683702455153714, 5.40915711808165841230478498160, 5.41811424919950636788680786496, 5.71612907731760073144472363523, 5.74418082480686659743647899497, 5.79070725236204426886621533244, 5.83002875426397754698990187127, 6.20498344693873524139999229300, 6.58868442508291220530219314533

Graph of the $Z$-function along the critical line