Properties

Label 2-234-13.12-c7-0-16
Degree $2$
Conductor $234$
Sign $0.696 - 0.717i$
Analytic cond. $73.0980$
Root an. cond. $8.54974$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8i·2-s − 64·4-s − 477. i·5-s + 855. i·7-s − 512i·8-s + 3.81e3·10-s + 1.40e3i·11-s + (5.68e3 + 5.51e3i)13-s − 6.84e3·14-s + 4.09e3·16-s − 2.45e4·17-s − 1.68e4i·19-s + 3.05e4i·20-s − 1.12e4·22-s + 5.41e4·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s − 1.70i·5-s + 0.942i·7-s − 0.353i·8-s + 1.20·10-s + 0.319i·11-s + (0.717 + 0.696i)13-s − 0.666·14-s + 0.250·16-s − 1.21·17-s − 0.564i·19-s + 0.853i·20-s − 0.225·22-s + 0.928·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $0.696 - 0.717i$
Analytic conductor: \(73.0980\)
Root analytic conductor: \(8.54974\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{234} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 234,\ (\ :7/2),\ 0.696 - 0.717i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.767674824\)
\(L(\frac12)\) \(\approx\) \(1.767674824\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8iT \)
3 \( 1 \)
13 \( 1 + (-5.68e3 - 5.51e3i)T \)
good5 \( 1 + 477. iT - 7.81e4T^{2} \)
7 \( 1 - 855. iT - 8.23e5T^{2} \)
11 \( 1 - 1.40e3iT - 1.94e7T^{2} \)
17 \( 1 + 2.45e4T + 4.10e8T^{2} \)
19 \( 1 + 1.68e4iT - 8.93e8T^{2} \)
23 \( 1 - 5.41e4T + 3.40e9T^{2} \)
29 \( 1 + 1.80e5T + 1.72e10T^{2} \)
31 \( 1 + 7.30e4iT - 2.75e10T^{2} \)
37 \( 1 - 3.10e5iT - 9.49e10T^{2} \)
41 \( 1 - 4.05e5iT - 1.94e11T^{2} \)
43 \( 1 - 6.26e5T + 2.71e11T^{2} \)
47 \( 1 + 1.19e6iT - 5.06e11T^{2} \)
53 \( 1 - 1.10e6T + 1.17e12T^{2} \)
59 \( 1 - 2.21e6iT - 2.48e12T^{2} \)
61 \( 1 - 2.71e6T + 3.14e12T^{2} \)
67 \( 1 + 2.35e6iT - 6.06e12T^{2} \)
71 \( 1 - 2.11e6iT - 9.09e12T^{2} \)
73 \( 1 - 2.97e5iT - 1.10e13T^{2} \)
79 \( 1 - 6.13e6T + 1.92e13T^{2} \)
83 \( 1 - 5.86e6iT - 2.71e13T^{2} \)
89 \( 1 + 5.02e6iT - 4.42e13T^{2} \)
97 \( 1 - 4.56e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.24861990626084452837391047422, −9.506137178082440901471142463519, −8.912590213676093139364615401960, −8.403985371547359171360480822739, −7.00377693875865975497953009652, −5.81041946890684573109552454134, −4.96709152117567926544529511965, −4.09198338136029062758816910553, −2.07963697575632900463823860263, −0.77485044444179829507354481768, 0.60747449243357315230173779986, 2.15992412938200714332180062184, 3.29414867743035764599868339449, 4.01673871752750253462398194618, 5.75460051170511312721233437391, 6.87072375837277624998316113103, 7.69327253035340982250962977952, 9.046753104656428790516572214536, 10.24520696914756588198470678213, 10.99181137325923248789430095684

Graph of the $Z$-function along the critical line