| L(s) = 1 | − 8i·2-s − 64·4-s − 319. i·5-s − 1.00e3i·7-s + 512i·8-s − 2.55e3·10-s + 7.26e3i·11-s + (7.92e3 − 43.0i)13-s − 8.06e3·14-s + 4.09e3·16-s + 2.54e4·17-s − 8.74e3i·19-s + 2.04e4i·20-s + 5.80e4·22-s + 8.35e4·23-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 1.14i·5-s − 1.11i·7-s + 0.353i·8-s − 0.807·10-s + 1.64i·11-s + (0.999 − 0.00543i)13-s − 0.785·14-s + 0.250·16-s + 1.25·17-s − 0.292i·19-s + 0.570i·20-s + 1.16·22-s + 1.43·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00543 + 0.999i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.00543 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(4)\) |
\(\approx\) |
\(2.403930797\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.403930797\) |
| \(L(\frac{9}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + 8iT \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-7.92e3 + 43.0i)T \) |
| good | 5 | \( 1 + 319. iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 1.00e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 7.26e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 - 2.54e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 8.74e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 8.35e4T + 3.40e9T^{2} \) |
| 29 | \( 1 - 1.97e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.38e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 - 6.18e4iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 7.84e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + 4.40e5T + 2.71e11T^{2} \) |
| 47 | \( 1 - 1.80e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 5.94e5T + 1.17e12T^{2} \) |
| 59 | \( 1 - 4.34e4iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 6.07e5T + 3.14e12T^{2} \) |
| 67 | \( 1 + 3.33e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 3.42e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 2.18e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 4.16e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 4.15e5iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 2.04e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 + 1.09e6iT - 8.07e13T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55106557234646084497744466216, −9.865302852778428016893556206146, −8.878758441016273170203119248385, −7.87358107581305892238182572710, −6.74594594810755381394232001736, −5.01926504424896846951808720293, −4.45789585787672918435148206619, −3.19533100369994420008028669067, −1.40528054018674921120832457116, −0.901690103486054421450845751483,
0.871277228110544982994515668925, 2.79334269628202235869531982837, 3.57565497296683822504921448749, 5.46747250657035413003223209217, 6.03940294262703626083750532250, 7.02568404485929809538437388466, 8.316037461288385540767041148870, 8.867042851299972856165972823947, 10.23395761856300687267369759269, 11.10902665407411634207208175630