Properties

Label 2-234-1.1-c7-0-27
Degree $2$
Conductor $234$
Sign $-1$
Analytic cond. $73.0980$
Root an. cond. $8.54974$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 64·4-s − 385·5-s − 293·7-s + 512·8-s − 3.08e3·10-s + 5.40e3·11-s + 2.19e3·13-s − 2.34e3·14-s + 4.09e3·16-s + 2.10e4·17-s − 2.73e4·19-s − 2.46e4·20-s + 4.32e4·22-s + 6.30e4·23-s + 7.01e4·25-s + 1.75e4·26-s − 1.87e4·28-s − 1.22e5·29-s − 2.08e5·31-s + 3.27e4·32-s + 1.68e5·34-s + 1.12e5·35-s − 4.42e5·37-s − 2.18e5·38-s − 1.97e5·40-s − 5.80e4·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.37·5-s − 0.322·7-s + 0.353·8-s − 0.973·10-s + 1.22·11-s + 0.277·13-s − 0.228·14-s + 1/4·16-s + 1.03·17-s − 0.913·19-s − 0.688·20-s + 0.865·22-s + 1.08·23-s + 0.897·25-s + 0.196·26-s − 0.161·28-s − 0.930·29-s − 1.25·31-s + 0.176·32-s + 0.733·34-s + 0.444·35-s − 1.43·37-s − 0.646·38-s − 0.486·40-s − 0.131·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(73.0980\)
Root analytic conductor: \(8.54974\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 234,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{3} T \)
3 \( 1 \)
13 \( 1 - p^{3} T \)
good5 \( 1 + 77 p T + p^{7} T^{2} \)
7 \( 1 + 293 T + p^{7} T^{2} \)
11 \( 1 - 5402 T + p^{7} T^{2} \)
17 \( 1 - 21011 T + p^{7} T^{2} \)
19 \( 1 + 27326 T + p^{7} T^{2} \)
23 \( 1 - 63072 T + p^{7} T^{2} \)
29 \( 1 + 122238 T + p^{7} T^{2} \)
31 \( 1 + 208396 T + p^{7} T^{2} \)
37 \( 1 + 442379 T + p^{7} T^{2} \)
41 \( 1 + 58000 T + p^{7} T^{2} \)
43 \( 1 + 202025 T + p^{7} T^{2} \)
47 \( 1 + 588511 T + p^{7} T^{2} \)
53 \( 1 + 1684336 T + p^{7} T^{2} \)
59 \( 1 - 442630 T + p^{7} T^{2} \)
61 \( 1 + 1083608 T + p^{7} T^{2} \)
67 \( 1 - 3443486 T + p^{7} T^{2} \)
71 \( 1 + 2084705 T + p^{7} T^{2} \)
73 \( 1 - 5937890 T + p^{7} T^{2} \)
79 \( 1 + 6609256 T + p^{7} T^{2} \)
83 \( 1 - 142740 T + p^{7} T^{2} \)
89 \( 1 - 6985286 T + p^{7} T^{2} \)
97 \( 1 + 200762 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83773553186241876316342095511, −9.412089970935848789872661434446, −8.318286734081370225938661702715, −7.27608039087104508238097108088, −6.43730867606195281079688031895, −5.07639553935898700318013842853, −3.84739987799775624175680934771, −3.36413228845551976686974094589, −1.49868688253634829475636753742, 0, 1.49868688253634829475636753742, 3.36413228845551976686974094589, 3.84739987799775624175680934771, 5.07639553935898700318013842853, 6.43730867606195281079688031895, 7.27608039087104508238097108088, 8.318286734081370225938661702715, 9.412089970935848789872661434446, 10.83773553186241876316342095511

Graph of the $Z$-function along the critical line