L(s) = 1 | + (1.36 − 0.366i)2-s + (1.73 − i)4-s + (−0.323 − 0.323i)5-s + (7.67 + 2.05i)7-s + (1.99 − 2i)8-s + (−0.560 − 0.323i)10-s + (−1.44 − 5.40i)11-s + (12.8 + 1.93i)13-s + 11.2·14-s + (1.99 − 3.46i)16-s + (1.74 − 1.00i)17-s + (1.19 − 4.47i)19-s + (−0.884 − 0.237i)20-s + (−3.95 − 6.85i)22-s + (15.0 + 8.71i)23-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.433 − 0.250i)4-s + (−0.0647 − 0.0647i)5-s + (1.09 + 0.293i)7-s + (0.249 − 0.250i)8-s + (−0.0560 − 0.0323i)10-s + (−0.131 − 0.491i)11-s + (0.988 + 0.148i)13-s + 0.803·14-s + (0.124 − 0.216i)16-s + (0.102 − 0.0591i)17-s + (0.0631 − 0.235i)19-s + (−0.0442 − 0.0118i)20-s + (−0.179 − 0.311i)22-s + (0.656 + 0.378i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.926 + 0.376i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.926 + 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.53528 - 0.494825i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.53528 - 0.494825i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.366i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-12.8 - 1.93i)T \) |
good | 5 | \( 1 + (0.323 + 0.323i)T + 25iT^{2} \) |
| 7 | \( 1 + (-7.67 - 2.05i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (1.44 + 5.40i)T + (-104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-1.74 + 1.00i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-1.19 + 4.47i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-15.0 - 8.71i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (8.25 - 14.2i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (9.27 + 9.27i)T + 961iT^{2} \) |
| 37 | \( 1 + (-9.12 - 34.0i)T + (-1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (58.6 - 15.7i)T + (1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (45.2 - 26.1i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (8.73 - 8.73i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 23.4T + 2.80e3T^{2} \) |
| 59 | \( 1 + (34.0 + 9.13i)T + (3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (13.9 + 24.1i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (33.0 - 8.85i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (19.7 - 73.8i)T + (-4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (18.9 - 18.9i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 142.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-91.7 - 91.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (40.4 + 150. i)T + (-6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-29.1 + 108. i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.66436990775034886801744674226, −11.30140560049163388461537493681, −10.22570829625930972581714977946, −8.801457207132927797513752099093, −7.996811268052659052948262741414, −6.63523193435569298220980136067, −5.49999482618331360292693113166, −4.53440570495795154307271166818, −3.15985769050763886223758436922, −1.51229838257516350067464423770,
1.69243411689925572477843296005, 3.48402338941726289953468181328, 4.67048754110292123164034259134, 5.65531150665835039258955749784, 6.97828669635375591229193486430, 7.88072291084428443985045474011, 8.890939285788622382017303477212, 10.40022483592185274702268583925, 11.16418980688193106391028944340, 11.99983944957916436256092742923