L(s) = 1 | + (1.36 + 0.366i)2-s + (1.73 + i)4-s + (−3.77 + 3.77i)5-s + (−9.91 + 2.65i)7-s + (1.99 + 2i)8-s + (−6.53 + 3.77i)10-s + (−2.71 + 10.1i)11-s + (−8.18 − 10.0i)13-s − 14.5·14-s + (1.99 + 3.46i)16-s + (−4.23 − 2.44i)17-s + (6.83 + 25.5i)19-s + (−10.3 + 2.76i)20-s + (−7.40 + 12.8i)22-s + (17.2 − 9.97i)23-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.433 + 0.250i)4-s + (−0.754 + 0.754i)5-s + (−1.41 + 0.379i)7-s + (0.249 + 0.250i)8-s + (−0.653 + 0.377i)10-s + (−0.246 + 0.919i)11-s + (−0.629 − 0.776i)13-s − 1.03·14-s + (0.124 + 0.216i)16-s + (−0.249 − 0.143i)17-s + (0.359 + 1.34i)19-s + (−0.515 + 0.138i)20-s + (−0.336 + 0.583i)22-s + (0.751 − 0.433i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.372609 + 1.09908i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.372609 + 1.09908i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.366i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (8.18 + 10.0i)T \) |
good | 5 | \( 1 + (3.77 - 3.77i)T - 25iT^{2} \) |
| 7 | \( 1 + (9.91 - 2.65i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (2.71 - 10.1i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (4.23 + 2.44i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-6.83 - 25.5i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (-17.2 + 9.97i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-7.15 - 12.3i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-19.0 + 19.0i)T - 961iT^{2} \) |
| 37 | \( 1 + (15.7 - 58.6i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (-4.83 - 1.29i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (10.3 + 5.98i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-7.59 - 7.59i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 77.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-60.7 + 16.2i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-28.1 + 48.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-5.90 - 1.58i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-14.7 - 55.2i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-12.7 - 12.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 7.98T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-35.8 + 35.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (20.9 - 78.2i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (14.1 + 52.9i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.48942827004608062896038793990, −11.63148448372788101022945827361, −10.38083722982226693433648961786, −9.681325538428329901224066543960, −8.084365977506067500647349740104, −7.12408627989045902114946968097, −6.34329351279787405467267054623, −5.02627076530616436354339244585, −3.57257279253405429913361839705, −2.73370430079253983732814759687,
0.47821109105835118344601274821, 2.88746123738766675247410654313, 3.99820066115675214998323749430, 5.08823884170934058549249931603, 6.44937077987620085727846663854, 7.32496340358601313847908254531, 8.742626318198404571754373447055, 9.613459280478577236642870255247, 10.84379529521781832537821922880, 11.74122800211251234476851562457