L(s) = 1 | + 2.51i·2-s + i·3-s − 4.32·4-s − 2.51·6-s + 0.485i·7-s − 5.83i·8-s − 9-s + 5.02·11-s − 4.32i·12-s − 3.51i·13-s − 1.22·14-s + 6.02·16-s − 1.32i·17-s − 2.51i·18-s + 6.64·19-s + ⋯ |
L(s) = 1 | + 1.77i·2-s + 0.577i·3-s − 2.16·4-s − 1.02·6-s + 0.183i·7-s − 2.06i·8-s − 0.333·9-s + 1.51·11-s − 1.24i·12-s − 0.974i·13-s − 0.326·14-s + 1.50·16-s − 0.320i·17-s − 0.592i·18-s + 1.52·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.762409053\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.762409053\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 31 | \( 1 - T \) |
good | 2 | \( 1 - 2.51iT - 2T^{2} \) |
| 7 | \( 1 - 0.485iT - 7T^{2} \) |
| 11 | \( 1 - 5.02T + 11T^{2} \) |
| 13 | \( 1 + 3.51iT - 13T^{2} \) |
| 17 | \( 1 + 1.32iT - 17T^{2} \) |
| 19 | \( 1 - 6.64T + 19T^{2} \) |
| 23 | \( 1 + 0.292iT - 23T^{2} \) |
| 29 | \( 1 - 9.86T + 29T^{2} \) |
| 37 | \( 1 - 5.51iT - 37T^{2} \) |
| 41 | \( 1 + 7.02T + 41T^{2} \) |
| 43 | \( 1 - 1.02iT - 43T^{2} \) |
| 47 | \( 1 + 6.93iT - 47T^{2} \) |
| 53 | \( 1 - 1.70iT - 53T^{2} \) |
| 59 | \( 1 - 2.19T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 - 9.12iT - 67T^{2} \) |
| 71 | \( 1 - 13.4T + 71T^{2} \) |
| 73 | \( 1 + 12.5iT - 73T^{2} \) |
| 79 | \( 1 - 0.349T + 79T^{2} \) |
| 83 | \( 1 + 10.9iT - 83T^{2} \) |
| 89 | \( 1 + 5.03T + 89T^{2} \) |
| 97 | \( 1 - 10.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.059184677312886187266293385027, −8.470888760186292909042615746343, −7.76202070956464440800460188600, −6.86170095935949362604575473609, −6.33760363833248444027085729729, −5.41862144675286811380922963762, −4.90547222480100975117330826243, −3.96321592576214188544464741894, −3.05245410288999508938190012725, −0.921492907264923545059491545631,
0.940233173126443279942010072190, 1.58191383953626723770369112874, 2.64339026572851748275400421342, 3.60514296981998117455827246718, 4.24386445488835475647504558918, 5.20112615498392525652251350388, 6.40929081763163814939051928925, 7.08318969208310867726577281031, 8.243365398964764626504683484659, 8.974056902381879693702778799479