L(s) = 1 | + 0.0750i·3-s − 2.06i·5-s + 2.86i·7-s + 2.99·9-s − 1.65i·11-s − 3.96·13-s + 0.155·15-s + 5.57·19-s − 0.214·21-s − 5.28i·23-s + 0.717·25-s + 0.449i·27-s + 6.99i·29-s + 6.39i·31-s + 0.124·33-s + ⋯ |
L(s) = 1 | + 0.0433i·3-s − 0.925i·5-s + 1.08i·7-s + 0.998·9-s − 0.498i·11-s − 1.09·13-s + 0.0401·15-s + 1.27·19-s − 0.0468·21-s − 1.10i·23-s + 0.143·25-s + 0.0865i·27-s + 1.29i·29-s + 1.14i·31-s + 0.0215·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.911 + 0.410i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.911 + 0.410i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.895143418\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.895143418\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 - 0.0750iT - 3T^{2} \) |
| 5 | \( 1 + 2.06iT - 5T^{2} \) |
| 7 | \( 1 - 2.86iT - 7T^{2} \) |
| 11 | \( 1 + 1.65iT - 11T^{2} \) |
| 13 | \( 1 + 3.96T + 13T^{2} \) |
| 19 | \( 1 - 5.57T + 19T^{2} \) |
| 23 | \( 1 + 5.28iT - 23T^{2} \) |
| 29 | \( 1 - 6.99iT - 29T^{2} \) |
| 31 | \( 1 - 6.39iT - 31T^{2} \) |
| 37 | \( 1 + 5.70iT - 37T^{2} \) |
| 41 | \( 1 + 9.87iT - 41T^{2} \) |
| 43 | \( 1 - 6.67T + 43T^{2} \) |
| 47 | \( 1 - 4.43T + 47T^{2} \) |
| 53 | \( 1 + 8.27T + 53T^{2} \) |
| 59 | \( 1 - 2.42T + 59T^{2} \) |
| 61 | \( 1 + 1.81iT - 61T^{2} \) |
| 67 | \( 1 - 15.8T + 67T^{2} \) |
| 71 | \( 1 + 8.54iT - 71T^{2} \) |
| 73 | \( 1 - 2.30iT - 73T^{2} \) |
| 79 | \( 1 - 14.0iT - 79T^{2} \) |
| 83 | \( 1 - 1.00T + 83T^{2} \) |
| 89 | \( 1 + 16.2T + 89T^{2} \) |
| 97 | \( 1 - 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.031951605813197146100144217236, −8.347770730675430363513534362389, −7.38343015206697057766501848563, −6.73818414306895739689684368196, −5.44260173570195303385051633610, −5.18370478745792616512380723977, −4.24483827827164255005432805622, −3.08254490731266233655483536250, −2.05090378343280438273026682030, −0.842532744329897086690209449791,
1.00738601406553312603587151721, 2.28324858023669101244623511687, 3.31241083573192986585822005889, 4.21619428132007225713304917283, 4.90961192677671730215715651037, 6.10159702169724484258248315605, 6.97541602754805961966536767333, 7.49828858045611539958699227143, 7.80306039689359788265651798783, 9.430960590599455479804769112648