Properties

Label 2-2312-17.16-c1-0-36
Degree $2$
Conductor $2312$
Sign $0.911 + 0.410i$
Analytic cond. $18.4614$
Root an. cond. $4.29667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0750i·3-s − 2.06i·5-s + 2.86i·7-s + 2.99·9-s − 1.65i·11-s − 3.96·13-s + 0.155·15-s + 5.57·19-s − 0.214·21-s − 5.28i·23-s + 0.717·25-s + 0.449i·27-s + 6.99i·29-s + 6.39i·31-s + 0.124·33-s + ⋯
L(s)  = 1  + 0.0433i·3-s − 0.925i·5-s + 1.08i·7-s + 0.998·9-s − 0.498i·11-s − 1.09·13-s + 0.0401·15-s + 1.27·19-s − 0.0468·21-s − 1.10i·23-s + 0.143·25-s + 0.0865i·27-s + 1.29i·29-s + 1.14i·31-s + 0.0215·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.911 + 0.410i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.911 + 0.410i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $0.911 + 0.410i$
Analytic conductor: \(18.4614\)
Root analytic conductor: \(4.29667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2312} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2312,\ (\ :1/2),\ 0.911 + 0.410i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.895143418\)
\(L(\frac12)\) \(\approx\) \(1.895143418\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 0.0750iT - 3T^{2} \)
5 \( 1 + 2.06iT - 5T^{2} \)
7 \( 1 - 2.86iT - 7T^{2} \)
11 \( 1 + 1.65iT - 11T^{2} \)
13 \( 1 + 3.96T + 13T^{2} \)
19 \( 1 - 5.57T + 19T^{2} \)
23 \( 1 + 5.28iT - 23T^{2} \)
29 \( 1 - 6.99iT - 29T^{2} \)
31 \( 1 - 6.39iT - 31T^{2} \)
37 \( 1 + 5.70iT - 37T^{2} \)
41 \( 1 + 9.87iT - 41T^{2} \)
43 \( 1 - 6.67T + 43T^{2} \)
47 \( 1 - 4.43T + 47T^{2} \)
53 \( 1 + 8.27T + 53T^{2} \)
59 \( 1 - 2.42T + 59T^{2} \)
61 \( 1 + 1.81iT - 61T^{2} \)
67 \( 1 - 15.8T + 67T^{2} \)
71 \( 1 + 8.54iT - 71T^{2} \)
73 \( 1 - 2.30iT - 73T^{2} \)
79 \( 1 - 14.0iT - 79T^{2} \)
83 \( 1 - 1.00T + 83T^{2} \)
89 \( 1 + 16.2T + 89T^{2} \)
97 \( 1 - 13.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.031951605813197146100144217236, −8.347770730675430363513534362389, −7.38343015206697057766501848563, −6.73818414306895739689684368196, −5.44260173570195303385051633610, −5.18370478745792616512380723977, −4.24483827827164255005432805622, −3.08254490731266233655483536250, −2.05090378343280438273026682030, −0.842532744329897086690209449791, 1.00738601406553312603587151721, 2.28324858023669101244623511687, 3.31241083573192986585822005889, 4.21619428132007225713304917283, 4.90961192677671730215715651037, 6.10159702169724484258248315605, 6.97541602754805961966536767333, 7.49828858045611539958699227143, 7.80306039689359788265651798783, 9.430960590599455479804769112648

Graph of the $Z$-function along the critical line