L(s) = 1 | + 1.84i·3-s + 0.765i·5-s + 4.46i·7-s − 0.414·9-s − 1.84i·11-s − 1.41·15-s + 6.24·19-s − 8.24·21-s + 4.90i·23-s + 4.41·25-s + 4.77i·27-s + 2.29i·29-s + 5.54i·31-s + 3.41·33-s − 3.41·35-s + ⋯ |
L(s) = 1 | + 1.06i·3-s + 0.342i·5-s + 1.68i·7-s − 0.138·9-s − 0.557i·11-s − 0.365·15-s + 1.43·19-s − 1.79·21-s + 1.02i·23-s + 0.882·25-s + 0.919i·27-s + 0.426i·29-s + 0.995i·31-s + 0.594·33-s − 0.577·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.928 - 0.371i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.928 - 0.371i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.763416771\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.763416771\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 - 1.84iT - 3T^{2} \) |
| 5 | \( 1 - 0.765iT - 5T^{2} \) |
| 7 | \( 1 - 4.46iT - 7T^{2} \) |
| 11 | \( 1 + 1.84iT - 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 19 | \( 1 - 6.24T + 19T^{2} \) |
| 23 | \( 1 - 4.90iT - 23T^{2} \) |
| 29 | \( 1 - 2.29iT - 29T^{2} \) |
| 31 | \( 1 - 5.54iT - 31T^{2} \) |
| 37 | \( 1 + 1.84iT - 37T^{2} \) |
| 41 | \( 1 - 9.68iT - 41T^{2} \) |
| 43 | \( 1 - 1.75T + 43T^{2} \) |
| 47 | \( 1 + 7.17T + 47T^{2} \) |
| 53 | \( 1 + 11.0T + 53T^{2} \) |
| 59 | \( 1 - 11.8T + 59T^{2} \) |
| 61 | \( 1 + 12.7iT - 61T^{2} \) |
| 67 | \( 1 - 1.65T + 67T^{2} \) |
| 71 | \( 1 + 2.48iT - 71T^{2} \) |
| 73 | \( 1 + 14.0iT - 73T^{2} \) |
| 79 | \( 1 + 13.5iT - 79T^{2} \) |
| 83 | \( 1 - 1.75T + 83T^{2} \) |
| 89 | \( 1 + 9.65T + 89T^{2} \) |
| 97 | \( 1 + 2.03iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.496954805749674171441270026962, −8.752992933994255810224283364205, −8.005733413383609408817621147592, −6.95217517408932309786864442775, −6.02624115327736124281743969712, −5.25091959417713687167516158780, −4.79236811647488140999428818976, −3.27400789438699735421586502755, −3.11697860514242253552606191941, −1.61355261222329820353182315669,
0.66195738697873842237529173407, 1.36291722421405065695845155632, 2.59915947265925990762667128948, 3.88593046390083072635768837373, 4.53752338596014859818246033808, 5.55628350875425261166124568881, 6.81456748594569811862952194597, 6.98533430132177888699340455263, 7.76785510976666045193960472224, 8.361699638942018944419862577609