| L(s) = 1 | + (0.276 + 0.478i)2-s + (−0.5 + 0.866i)3-s + (0.847 − 1.46i)4-s + (−0.795 − 1.37i)5-s − 0.552·6-s + (0.886 − 2.49i)7-s + 2.04·8-s + (−0.499 − 0.866i)9-s + (0.439 − 0.760i)10-s + (0.5 − 0.866i)11-s + (0.847 + 1.46i)12-s + 2.87·13-s + (1.43 − 0.264i)14-s + 1.59·15-s + (−1.13 − 1.95i)16-s + (−2.41 + 4.18i)17-s + ⋯ |
| L(s) = 1 | + (0.195 + 0.338i)2-s + (−0.288 + 0.499i)3-s + (0.423 − 0.733i)4-s + (−0.355 − 0.615i)5-s − 0.225·6-s + (0.335 − 0.942i)7-s + 0.721·8-s + (−0.166 − 0.288i)9-s + (0.138 − 0.240i)10-s + (0.150 − 0.261i)11-s + (0.244 + 0.423i)12-s + 0.798·13-s + (0.384 − 0.0706i)14-s + 0.410·15-s + (−0.282 − 0.489i)16-s + (−0.586 + 1.01i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 + 0.394i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 231 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.919 + 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.32803 - 0.272772i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.32803 - 0.272772i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.886 + 2.49i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-0.276 - 0.478i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.795 + 1.37i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 2.87T + 13T^{2} \) |
| 17 | \( 1 + (2.41 - 4.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.572 - 0.992i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.82 - 3.16i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 0.325T + 29T^{2} \) |
| 31 | \( 1 + (3.22 - 5.58i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.847 + 1.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.05T + 41T^{2} \) |
| 43 | \( 1 - 4.62T + 43T^{2} \) |
| 47 | \( 1 + (0.152 + 0.264i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.85 - 4.94i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.93 - 10.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.886 + 1.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.63 - 13.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.16T + 71T^{2} \) |
| 73 | \( 1 + (-5.86 + 10.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.35 - 7.54i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.40T + 83T^{2} \) |
| 89 | \( 1 + (-2.87 - 4.97i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.65T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99658263047506728482618121274, −10.83363965050278833422016042324, −10.61891236319438271090376436371, −9.238519670720707235888863775354, −8.149600442754550098440076774280, −6.93964968946083329810763053426, −5.90060907194582771522793469271, −4.80341511601323469370084678060, −3.82330415772029047684426536274, −1.28258670367271263540369127726,
2.14386767711641950425743656172, 3.29908387171146754628571430667, 4.83914330511218405621535077545, 6.33752613269677379715130109822, 7.21316077415277877595608713118, 8.165287255080052622012695973571, 9.230628080110869304784679199463, 10.96031542476189057089046745808, 11.30701123102849467700965134262, 12.15796735576492853314423815212