L(s) = 1 | + (0.258 − 0.965i)3-s + (1.36 − 0.366i)5-s + (−0.707 − 1.22i)7-s + (−0.866 − 0.499i)9-s + (−0.965 − 0.258i)11-s − 1.41i·15-s + 17-s + (0.707 + 0.707i)19-s + (−1.36 + 0.366i)21-s + (0.866 − 0.5i)25-s + (−0.707 + 0.707i)27-s + (−1.36 − 0.366i)29-s + (−0.499 + 0.866i)33-s + (−1.41 − 1.41i)35-s + (−1 − i)37-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)3-s + (1.36 − 0.366i)5-s + (−0.707 − 1.22i)7-s + (−0.866 − 0.499i)9-s + (−0.965 − 0.258i)11-s − 1.41i·15-s + 17-s + (0.707 + 0.707i)19-s + (−1.36 + 0.366i)21-s + (0.866 − 0.5i)25-s + (−0.707 + 0.707i)27-s + (−1.36 − 0.366i)29-s + (−0.499 + 0.866i)33-s + (−1.41 − 1.41i)35-s + (−1 − i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.461 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.461 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.378698619\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.378698619\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.258 + 0.965i)T \) |
good | 5 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.109874627166334200453538183172, −7.84728091984015357919308102740, −7.56152460272012701724120852076, −6.61938428445263842319655434774, −5.75349124112670527584040360531, −5.41387065151071605712477990419, −3.86084526024541435629952154289, −2.98234714535537299689968012706, −1.93894633505965744101513759932, −0.903677304998079378541352215973,
2.09592863091422994892390533093, 2.76807555302392370328873369225, 3.47676166089465420936375205296, 4.98246441753292638382805783847, 5.53581657857982792850153167913, 5.95561028839456247010938354721, 7.07796282976504235123348609683, 8.077846696725923559023027347175, 9.062047897854816263575195329893, 9.450551096678034717351644911733