Properties

Label 2-2303-1.1-c3-0-158
Degree $2$
Conductor $2303$
Sign $1$
Analytic cond. $135.881$
Root an. cond. $11.6568$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.69·2-s + 5.19·3-s − 0.731·4-s − 5.54·5-s + 14.0·6-s − 23.5·8-s + 0.0251·9-s − 14.9·10-s + 25.5·11-s − 3.80·12-s − 56.4·13-s − 28.8·15-s − 57.6·16-s − 22.0·17-s + 0.0677·18-s − 1.02·19-s + 4.05·20-s + 68.9·22-s + 121.·23-s − 122.·24-s − 94.2·25-s − 152.·26-s − 140.·27-s + 276.·29-s − 77.6·30-s − 66.8·31-s + 32.9·32-s + ⋯
L(s)  = 1  + 0.953·2-s + 1.00·3-s − 0.0914·4-s − 0.495·5-s + 0.953·6-s − 1.04·8-s + 0.000930·9-s − 0.472·10-s + 0.700·11-s − 0.0914·12-s − 1.20·13-s − 0.495·15-s − 0.900·16-s − 0.315·17-s + 0.000887·18-s − 0.0123·19-s + 0.0453·20-s + 0.667·22-s + 1.09·23-s − 1.04·24-s − 0.754·25-s − 1.14·26-s − 0.999·27-s + 1.77·29-s − 0.472·30-s − 0.387·31-s + 0.182·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2303 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2303 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2303\)    =    \(7^{2} \cdot 47\)
Sign: $1$
Analytic conductor: \(135.881\)
Root analytic conductor: \(11.6568\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2303,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.378994596\)
\(L(\frac12)\) \(\approx\) \(3.378994596\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
47 \( 1 - 47T \)
good2 \( 1 - 2.69T + 8T^{2} \)
3 \( 1 - 5.19T + 27T^{2} \)
5 \( 1 + 5.54T + 125T^{2} \)
11 \( 1 - 25.5T + 1.33e3T^{2} \)
13 \( 1 + 56.4T + 2.19e3T^{2} \)
17 \( 1 + 22.0T + 4.91e3T^{2} \)
19 \( 1 + 1.02T + 6.85e3T^{2} \)
23 \( 1 - 121.T + 1.21e4T^{2} \)
29 \( 1 - 276.T + 2.43e4T^{2} \)
31 \( 1 + 66.8T + 2.97e4T^{2} \)
37 \( 1 - 17.1T + 5.06e4T^{2} \)
41 \( 1 - 232.T + 6.89e4T^{2} \)
43 \( 1 - 545.T + 7.95e4T^{2} \)
53 \( 1 - 7.63T + 1.48e5T^{2} \)
59 \( 1 - 180.T + 2.05e5T^{2} \)
61 \( 1 + 175.T + 2.26e5T^{2} \)
67 \( 1 - 438.T + 3.00e5T^{2} \)
71 \( 1 - 637.T + 3.57e5T^{2} \)
73 \( 1 - 880.T + 3.89e5T^{2} \)
79 \( 1 + 737.T + 4.93e5T^{2} \)
83 \( 1 + 491.T + 5.71e5T^{2} \)
89 \( 1 + 571.T + 7.04e5T^{2} \)
97 \( 1 - 539.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.733372583782276199688203276036, −7.906452486954929628107909501693, −7.13927860344684294232511202887, −6.23633343211424057982034687965, −5.28717159636239524008641092681, −4.44907784659301411092599916366, −3.84928700435952430662997579213, −2.95003899993456914457280104927, −2.33601027038679079913551226621, −0.65438719546778774221008046022, 0.65438719546778774221008046022, 2.33601027038679079913551226621, 2.95003899993456914457280104927, 3.84928700435952430662997579213, 4.44907784659301411092599916366, 5.28717159636239524008641092681, 6.23633343211424057982034687965, 7.13927860344684294232511202887, 7.906452486954929628107909501693, 8.733372583782276199688203276036

Graph of the $Z$-function along the critical line