Properties

Label 2-2300-1.1-c3-0-25
Degree $2$
Conductor $2300$
Sign $1$
Analytic cond. $135.704$
Root an. cond. $11.6492$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.93·3-s − 3.12·7-s + 8.18·9-s − 14.3·11-s + 66.6·13-s + 109.·17-s + 40.4·19-s + 18.5·21-s + 23·23-s + 111.·27-s − 122.·29-s + 172.·31-s + 84.9·33-s − 1.84·37-s − 395.·39-s − 220.·41-s − 48.9·43-s + 21.5·47-s − 333.·49-s − 648.·51-s + 15.7·53-s − 239.·57-s + 684.·59-s − 480.·61-s − 25.5·63-s + 171.·67-s − 136.·69-s + ⋯
L(s)  = 1  − 1.14·3-s − 0.168·7-s + 0.303·9-s − 0.392·11-s + 1.42·13-s + 1.55·17-s + 0.488·19-s + 0.192·21-s + 0.208·23-s + 0.795·27-s − 0.787·29-s + 0.998·31-s + 0.447·33-s − 0.00819·37-s − 1.62·39-s − 0.840·41-s − 0.173·43-s + 0.0670·47-s − 0.971·49-s − 1.77·51-s + 0.0409·53-s − 0.557·57-s + 1.50·59-s − 1.00·61-s − 0.0510·63-s + 0.312·67-s − 0.238·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2300\)    =    \(2^{2} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(135.704\)
Root analytic conductor: \(11.6492\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2300,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.414624926\)
\(L(\frac12)\) \(\approx\) \(1.414624926\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 5.93T + 27T^{2} \)
7 \( 1 + 3.12T + 343T^{2} \)
11 \( 1 + 14.3T + 1.33e3T^{2} \)
13 \( 1 - 66.6T + 2.19e3T^{2} \)
17 \( 1 - 109.T + 4.91e3T^{2} \)
19 \( 1 - 40.4T + 6.85e3T^{2} \)
29 \( 1 + 122.T + 2.43e4T^{2} \)
31 \( 1 - 172.T + 2.97e4T^{2} \)
37 \( 1 + 1.84T + 5.06e4T^{2} \)
41 \( 1 + 220.T + 6.89e4T^{2} \)
43 \( 1 + 48.9T + 7.95e4T^{2} \)
47 \( 1 - 21.5T + 1.03e5T^{2} \)
53 \( 1 - 15.7T + 1.48e5T^{2} \)
59 \( 1 - 684.T + 2.05e5T^{2} \)
61 \( 1 + 480.T + 2.26e5T^{2} \)
67 \( 1 - 171.T + 3.00e5T^{2} \)
71 \( 1 - 382.T + 3.57e5T^{2} \)
73 \( 1 + 381.T + 3.89e5T^{2} \)
79 \( 1 - 345.T + 4.93e5T^{2} \)
83 \( 1 - 243.T + 5.71e5T^{2} \)
89 \( 1 + 618.T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.540773684933173430963264730116, −7.915847048814705137225141866641, −6.93191894708555962287123444305, −6.15811168936106854364549665657, −5.57916764059452735513713186955, −4.94725535701256836225978295373, −3.75411703370252655648122576070, −2.98770944395996472148811237393, −1.44385001747797443645516318760, −0.61565293223525701777499526321, 0.61565293223525701777499526321, 1.44385001747797443645516318760, 2.98770944395996472148811237393, 3.75411703370252655648122576070, 4.94725535701256836225978295373, 5.57916764059452735513713186955, 6.15811168936106854364549665657, 6.93191894708555962287123444305, 7.915847048814705137225141866641, 8.540773684933173430963264730116

Graph of the $Z$-function along the critical line