Properties

Label 2-2300-5.4-c1-0-1
Degree $2$
Conductor $2300$
Sign $0.447 - 0.894i$
Analytic cond. $18.3655$
Root an. cond. $4.28550$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66i·3-s + 0.750i·7-s − 4.09·9-s − 4.57·11-s − 3.84i·13-s + 7.32i·17-s − 6.57·19-s + 2.00·21-s + i·23-s + 2.91i·27-s + 7.00·29-s + 4.43·31-s + 12.1i·33-s − 0.860i·37-s − 10.2·39-s + ⋯
L(s)  = 1  − 1.53i·3-s + 0.283i·7-s − 1.36·9-s − 1.37·11-s − 1.06i·13-s + 1.77i·17-s − 1.50·19-s + 0.436·21-s + 0.208i·23-s + 0.560i·27-s + 1.30·29-s + 0.795·31-s + 2.12i·33-s − 0.141i·37-s − 1.63·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2300\)    =    \(2^{2} \cdot 5^{2} \cdot 23\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(18.3655\)
Root analytic conductor: \(4.28550\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2300} (1749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2300,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4773867176\)
\(L(\frac12)\) \(\approx\) \(0.4773867176\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - iT \)
good3 \( 1 + 2.66iT - 3T^{2} \)
7 \( 1 - 0.750iT - 7T^{2} \)
11 \( 1 + 4.57T + 11T^{2} \)
13 \( 1 + 3.84iT - 13T^{2} \)
17 \( 1 - 7.32iT - 17T^{2} \)
19 \( 1 + 6.57T + 19T^{2} \)
29 \( 1 - 7.00T + 29T^{2} \)
31 \( 1 - 4.43T + 31T^{2} \)
37 \( 1 + 0.860iT - 37T^{2} \)
41 \( 1 + 9.60T + 41T^{2} \)
43 \( 1 - 6.57iT - 43T^{2} \)
47 \( 1 - 10.9iT - 47T^{2} \)
53 \( 1 + 1.82iT - 53T^{2} \)
59 \( 1 + 7.57T + 59T^{2} \)
61 \( 1 - 9.82T + 61T^{2} \)
67 \( 1 - 10.1iT - 67T^{2} \)
71 \( 1 + 4.42T + 71T^{2} \)
73 \( 1 + 4.50iT - 73T^{2} \)
79 \( 1 + 12.0T + 79T^{2} \)
83 \( 1 - 11.9iT - 83T^{2} \)
89 \( 1 + 3.86T + 89T^{2} \)
97 \( 1 - 0.537iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.650607576335395904336884682846, −8.173047845706920277680137859305, −7.83271034856319669776465573535, −6.75269852597921181195200173059, −6.15092201982173902523794264344, −5.50265110416333624999926451386, −4.37600960312933760645326944091, −2.97622053773548575365803908795, −2.30530935114036861435566496101, −1.23740545325966807556889146921, 0.16392254755592012794825884119, 2.29706111638984976526487317633, 3.13929209735208587478758278026, 4.22807553007419660798841401363, 4.76230478717923276577726561587, 5.35961605984025563857658225194, 6.54912917220505411681958850703, 7.28590939708657248011497256014, 8.483400834540374691159165452717, 8.828430637792254262463581923571

Graph of the $Z$-function along the critical line