Properties

Label 2-230-115.102-c3-0-14
Degree $2$
Conductor $230$
Sign $0.718 - 0.695i$
Analytic cond. $13.5704$
Root an. cond. $3.68380$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.142 − 1.99i)2-s + (6.09 − 1.32i)3-s + (−3.95 − 0.569i)4-s + (2.72 + 10.8i)5-s + (−1.77 − 12.3i)6-s + (−27.2 + 14.8i)7-s + (−1.70 + 7.81i)8-s + (10.8 − 4.96i)9-s + (22.0 − 3.88i)10-s + (22.6 + 19.6i)11-s + (−24.9 + 1.78i)12-s + (−1.13 + 2.08i)13-s + (25.7 + 56.4i)14-s + (30.9 + 62.5i)15-s + (15.3 + 4.50i)16-s + (79.5 + 59.5i)17-s + ⋯
L(s)  = 1  + (0.0504 − 0.705i)2-s + (1.17 − 0.255i)3-s + (−0.494 − 0.0711i)4-s + (0.243 + 0.969i)5-s + (−0.120 − 0.840i)6-s + (−1.47 + 0.803i)7-s + (−0.0751 + 0.345i)8-s + (0.402 − 0.184i)9-s + (0.696 − 0.122i)10-s + (0.620 + 0.537i)11-s + (−0.599 + 0.0428i)12-s + (−0.0242 + 0.0444i)13-s + (0.492 + 1.07i)14-s + (0.533 + 1.07i)15-s + (0.239 + 0.0704i)16-s + (1.13 + 0.850i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 - 0.695i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $0.718 - 0.695i$
Analytic conductor: \(13.5704\)
Root analytic conductor: \(3.68380\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{230} (217, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :3/2),\ 0.718 - 0.695i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.86245 + 0.753339i\)
\(L(\frac12)\) \(\approx\) \(1.86245 + 0.753339i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.142 + 1.99i)T \)
5 \( 1 + (-2.72 - 10.8i)T \)
23 \( 1 + (-29.4 + 106. i)T \)
good3 \( 1 + (-6.09 + 1.32i)T + (24.5 - 11.2i)T^{2} \)
7 \( 1 + (27.2 - 14.8i)T + (185. - 288. i)T^{2} \)
11 \( 1 + (-22.6 - 19.6i)T + (189. + 1.31e3i)T^{2} \)
13 \( 1 + (1.13 - 2.08i)T + (-1.18e3 - 1.84e3i)T^{2} \)
17 \( 1 + (-79.5 - 59.5i)T + (1.38e3 + 4.71e3i)T^{2} \)
19 \( 1 + (11.7 - 81.4i)T + (-6.58e3 - 1.93e3i)T^{2} \)
29 \( 1 + (-201. + 28.9i)T + (2.34e4 - 6.87e3i)T^{2} \)
31 \( 1 + (155. - 100. i)T + (1.23e4 - 2.70e4i)T^{2} \)
37 \( 1 + (227. + 84.7i)T + (3.82e4 + 3.31e4i)T^{2} \)
41 \( 1 + (-75.4 + 165. i)T + (-4.51e4 - 5.20e4i)T^{2} \)
43 \( 1 + (-53.1 - 244. i)T + (-7.23e4 + 3.30e4i)T^{2} \)
47 \( 1 + (-77.5 - 77.5i)T + 1.03e5iT^{2} \)
53 \( 1 + (-134. - 245. i)T + (-8.04e4 + 1.25e5i)T^{2} \)
59 \( 1 + (136. + 466. i)T + (-1.72e5 + 1.11e5i)T^{2} \)
61 \( 1 + (180. + 281. i)T + (-9.42e4 + 2.06e5i)T^{2} \)
67 \( 1 + (-673. - 48.1i)T + (2.97e5 + 4.28e4i)T^{2} \)
71 \( 1 + (-316. - 365. i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (482. + 644. i)T + (-1.09e5 + 3.73e5i)T^{2} \)
79 \( 1 + (-651. + 191. i)T + (4.14e5 - 2.66e5i)T^{2} \)
83 \( 1 + (53.4 - 143. i)T + (-4.32e5 - 3.74e5i)T^{2} \)
89 \( 1 + (-848. - 545. i)T + (2.92e5 + 6.41e5i)T^{2} \)
97 \( 1 + (24.1 + 64.7i)T + (-6.89e5 + 5.97e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32212997288067848692381483572, −10.68400915317113889868371102387, −9.860547526985688348718343280675, −9.165598523972705869636247663257, −8.138920267104954882435116657595, −6.82408779733472470631905600094, −5.84198263851178456772054202596, −3.68392257521987989358984593067, −3.00823052473651134108957750773, −1.96960081328551112378112098617, 0.70636868783625435540633030815, 3.09572428073085233272602028833, 3.97541607155712549954542625762, 5.42606021759933160373284407182, 6.68522713099229923618638147507, 7.70943100968699664264937361960, 8.880639104035181172236204049781, 9.346072753251239245750189528074, 10.12769215663287409204965111846, 11.90609153760149773720948454169

Graph of the $Z$-function along the critical line