Properties

Label 2-23-23.6-c3-0-1
Degree $2$
Conductor $23$
Sign $-0.443 - 0.896i$
Analytic cond. $1.35704$
Root an. cond. $1.16492$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.10 + 4.61i)2-s + (8.43 + 2.47i)3-s + (−11.6 − 13.4i)4-s + (−5.02 + 3.22i)5-s + (−29.1 + 33.6i)6-s + (3.12 − 21.7i)7-s + (47.3 − 13.9i)8-s + (42.2 + 27.1i)9-s + (−4.31 − 29.9i)10-s + (4.09 + 8.97i)11-s + (−64.7 − 141. i)12-s + (2.55 + 17.7i)13-s + (93.5 + 60.1i)14-s + (−50.3 + 14.7i)15-s + (−15.4 + 107. i)16-s + (17.5 − 20.2i)17-s + ⋯
L(s)  = 1  + (−0.745 + 1.63i)2-s + (1.62 + 0.476i)3-s + (−1.45 − 1.67i)4-s + (−0.449 + 0.288i)5-s + (−1.98 + 2.29i)6-s + (0.168 − 1.17i)7-s + (2.09 − 0.614i)8-s + (1.56 + 1.00i)9-s + (−0.136 − 0.948i)10-s + (0.112 + 0.245i)11-s + (−1.55 − 3.41i)12-s + (0.0545 + 0.379i)13-s + (1.78 + 1.14i)14-s + (−0.866 + 0.254i)15-s + (−0.241 + 1.67i)16-s + (0.250 − 0.288i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.443 - 0.896i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.443 - 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23\)
Sign: $-0.443 - 0.896i$
Analytic conductor: \(1.35704\)
Root analytic conductor: \(1.16492\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{23} (6, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 23,\ (\ :3/2),\ -0.443 - 0.896i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.579333 + 0.933003i\)
\(L(\frac12)\) \(\approx\) \(0.579333 + 0.933003i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + (93.1 + 59.0i)T \)
good2 \( 1 + (2.10 - 4.61i)T + (-5.23 - 6.04i)T^{2} \)
3 \( 1 + (-8.43 - 2.47i)T + (22.7 + 14.5i)T^{2} \)
5 \( 1 + (5.02 - 3.22i)T + (51.9 - 113. i)T^{2} \)
7 \( 1 + (-3.12 + 21.7i)T + (-329. - 96.6i)T^{2} \)
11 \( 1 + (-4.09 - 8.97i)T + (-871. + 1.00e3i)T^{2} \)
13 \( 1 + (-2.55 - 17.7i)T + (-2.10e3 + 618. i)T^{2} \)
17 \( 1 + (-17.5 + 20.2i)T + (-699. - 4.86e3i)T^{2} \)
19 \( 1 + (45.4 + 52.4i)T + (-976. + 6.78e3i)T^{2} \)
29 \( 1 + (-26.8 + 30.9i)T + (-3.47e3 - 2.41e4i)T^{2} \)
31 \( 1 + (-85.9 + 25.2i)T + (2.50e4 - 1.61e4i)T^{2} \)
37 \( 1 + (372. + 239. i)T + (2.10e4 + 4.60e4i)T^{2} \)
41 \( 1 + (238. - 153. i)T + (2.86e4 - 6.26e4i)T^{2} \)
43 \( 1 + (-510. - 149. i)T + (6.68e4 + 4.29e4i)T^{2} \)
47 \( 1 + 228.T + 1.03e5T^{2} \)
53 \( 1 + (52.9 - 368. i)T + (-1.42e5 - 4.19e4i)T^{2} \)
59 \( 1 + (-105. - 733. i)T + (-1.97e5 + 5.78e4i)T^{2} \)
61 \( 1 + (-504. + 148. i)T + (1.90e5 - 1.22e5i)T^{2} \)
67 \( 1 + (18.7 - 41.1i)T + (-1.96e5 - 2.27e5i)T^{2} \)
71 \( 1 + (-74.1 + 162. i)T + (-2.34e5 - 2.70e5i)T^{2} \)
73 \( 1 + (147. + 169. i)T + (-5.53e4 + 3.85e5i)T^{2} \)
79 \( 1 + (-8.57 - 59.6i)T + (-4.73e5 + 1.38e5i)T^{2} \)
83 \( 1 + (-387. - 249. i)T + (2.37e5 + 5.20e5i)T^{2} \)
89 \( 1 + (82.8 + 24.3i)T + (5.93e5 + 3.81e5i)T^{2} \)
97 \( 1 + (522. - 336. i)T + (3.79e5 - 8.30e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.52308135440818955989818365097, −16.25373772136673683999710124547, −15.31953508941960195242133196676, −14.38174325872598698213441594564, −13.67325782539776515230966208273, −10.34228008870615584607271993483, −9.150932529947276956982769199195, −7.970859858780554051829744893331, −7.06913104143960364593637498943, −4.23454028291830758286295145909, 2.03013856270085475937654386551, 3.53623728399808708063776435630, 8.185720002556080324588976762228, 8.662386175484583849948128178792, 10.00811591432357018126053871664, 11.92237487882613013388282207574, 12.70507195622483896982323332056, 14.06089106155370688084870848174, 15.55588942011457741689571120363, 17.73312477097853542058061962391

Graph of the $Z$-function along the critical line