L(s) = 1 | + 6.81e3·2-s + 5.80e4·3-s + 2.96e7·4-s − 3.73e8i·5-s + 3.95e8·6-s + 1.51e10i·7-s + 8.78e10·8-s − 2.79e11·9-s − 2.54e12i·10-s + 3.53e11i·11-s + 1.72e12·12-s − 2.79e13·13-s + 1.03e14i·14-s − 2.16e13i·15-s + 1.00e14·16-s + 2.91e14i·17-s + ⋯ |
L(s) = 1 | + 1.66·2-s + 0.109·3-s + 1.76·4-s − 1.53i·5-s + 0.181·6-s + 1.09i·7-s + 1.27·8-s − 0.988·9-s − 2.54i·10-s + 0.112i·11-s + 0.193·12-s − 1.20·13-s + 1.82i·14-s − 0.167i·15-s + 0.358·16-s + 0.501i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 - 0.159i)\, \overline{\Lambda}(25-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+12) \, L(s)\cr =\mathstrut & (-0.987 - 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{25}{2})\) |
\(\approx\) |
\(0.6818872055\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6818872055\) |
\(L(13)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 23 | \( 1 + (2.16e16 + 3.50e15i)T \) |
good | 2 | \( 1 - 6.81e3T + 1.67e7T^{2} \) |
| 3 | \( 1 - 5.80e4T + 2.82e11T^{2} \) |
| 5 | \( 1 + 3.73e8iT - 5.96e16T^{2} \) |
| 7 | \( 1 - 1.51e10iT - 1.91e20T^{2} \) |
| 11 | \( 1 - 3.53e11iT - 9.84e24T^{2} \) |
| 13 | \( 1 + 2.79e13T + 5.42e26T^{2} \) |
| 17 | \( 1 - 2.91e14iT - 3.39e29T^{2} \) |
| 19 | \( 1 + 2.21e15iT - 4.89e30T^{2} \) |
| 29 | \( 1 - 1.53e17T + 1.25e35T^{2} \) |
| 31 | \( 1 + 7.94e16T + 6.20e35T^{2} \) |
| 37 | \( 1 - 4.84e18iT - 4.33e37T^{2} \) |
| 41 | \( 1 - 8.62e18T + 5.09e38T^{2} \) |
| 43 | \( 1 - 4.66e19iT - 1.59e39T^{2} \) |
| 47 | \( 1 + 2.01e20T + 1.35e40T^{2} \) |
| 53 | \( 1 - 2.41e19iT - 2.41e41T^{2} \) |
| 59 | \( 1 + 7.80e20T + 3.16e42T^{2} \) |
| 61 | \( 1 + 4.69e21iT - 7.04e42T^{2} \) |
| 67 | \( 1 - 7.26e20iT - 6.69e43T^{2} \) |
| 71 | \( 1 - 1.16e22T + 2.69e44T^{2} \) |
| 73 | \( 1 + 1.77e22T + 5.24e44T^{2} \) |
| 79 | \( 1 + 4.96e22iT - 3.49e45T^{2} \) |
| 83 | \( 1 + 6.77e22iT - 1.14e46T^{2} \) |
| 89 | \( 1 + 2.32e23iT - 6.10e46T^{2} \) |
| 97 | \( 1 - 8.76e23iT - 4.81e47T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29379946388962396176615476613, −11.58612298381138031164302161298, −9.337789381301841807343358344428, −8.200046546692857794899386576072, −6.21200432176774459973463398695, −5.20457739540954933353396234099, −4.58555147265390841176791878769, −2.95823431053193478513115310012, −1.95853109277450710473360827834, −0.07000123096819230833540171468,
2.26305826319127752636764871702, 3.14146956173507981566349534252, 4.05927162134843919910138158689, 5.55412528792294825966552234204, 6.68044986149546830984555726176, 7.59742123132488172341518074620, 10.11602600678783523761709769864, 11.15743693476742973707445953447, 12.15365615424243660779687002040, 13.79236258463290340204451200185