L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + 5-s − 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + (0.707 + 0.707i)10-s − 2i·11-s + (0.707 − 0.707i)12-s − 1.41i·13-s + (−0.707 − 0.707i)15-s − 1.00·16-s + (−0.707 + 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + 5-s − 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + (0.707 + 0.707i)10-s − 2i·11-s + (0.707 − 0.707i)12-s − 1.41i·13-s + (−0.707 − 0.707i)15-s − 1.00·16-s + (−0.707 + 0.707i)18-s + 19-s + 1.00i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.593515113\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.593515113\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 - T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 2iT - T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - 1.41iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 2iT - T^{2} \) |
| 67 | \( 1 + 1.41T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.848175147870554900523024800408, −8.260812883841460062844660125388, −7.52273535330198872359139213415, −6.62682306809598678486736143920, −5.79276965111497701059358053119, −5.69079842260482787959976157862, −4.84556057378320583285549685076, −3.31276704765716271918479716585, −2.70729738919641362871979645479, −1.05860261310693909210248688798,
1.53962113903152399526696618885, 2.33056437466544820814073122667, 3.65280851700053657009761187399, 4.56380653771348253299595284075, 4.98622118720603750882841316633, 5.84689434631890560382277222573, 6.65829110372480489275451063268, 7.23572465696843969893181932198, 9.128634702699688092348506974173, 9.419636437033050020745684956656