Properties

Label 2-228-76.3-c1-0-18
Degree $2$
Conductor $228$
Sign $-0.254 + 0.967i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.947 − 1.05i)2-s + (−0.939 + 0.342i)3-s + (−0.205 − 1.98i)4-s + (0.234 − 1.33i)5-s + (−0.530 + 1.31i)6-s + (1.38 − 0.798i)7-s + (−2.28 − 1.66i)8-s + (0.766 − 0.642i)9-s + (−1.17 − 1.50i)10-s + (−2.03 − 1.17i)11-s + (0.873 + 1.79i)12-s + (0.358 − 0.983i)13-s + (0.471 − 2.20i)14-s + (0.234 + 1.33i)15-s + (−3.91 + 0.819i)16-s + (2.41 + 2.02i)17-s + ⋯
L(s)  = 1  + (0.669 − 0.742i)2-s + (−0.542 + 0.197i)3-s + (−0.102 − 0.994i)4-s + (0.104 − 0.594i)5-s + (−0.216 + 0.535i)6-s + (0.522 − 0.301i)7-s + (−0.807 − 0.589i)8-s + (0.255 − 0.214i)9-s + (−0.371 − 0.476i)10-s + (−0.614 − 0.355i)11-s + (0.252 + 0.519i)12-s + (0.0992 − 0.272i)13-s + (0.125 − 0.590i)14-s + (0.0605 + 0.343i)15-s + (−0.978 + 0.204i)16-s + (0.585 + 0.491i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.254 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.254 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228\)    =    \(2^{2} \cdot 3 \cdot 19\)
Sign: $-0.254 + 0.967i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{228} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 228,\ (\ :1/2),\ -0.254 + 0.967i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.882498 - 1.14449i\)
\(L(\frac12)\) \(\approx\) \(0.882498 - 1.14449i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.947 + 1.05i)T \)
3 \( 1 + (0.939 - 0.342i)T \)
19 \( 1 + (-2.22 + 3.74i)T \)
good5 \( 1 + (-0.234 + 1.33i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (-1.38 + 0.798i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (2.03 + 1.17i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.358 + 0.983i)T + (-9.95 - 8.35i)T^{2} \)
17 \( 1 + (-2.41 - 2.02i)T + (2.95 + 16.7i)T^{2} \)
23 \( 1 + (3.00 - 0.530i)T + (21.6 - 7.86i)T^{2} \)
29 \( 1 + (-1.87 - 2.23i)T + (-5.03 + 28.5i)T^{2} \)
31 \( 1 + (-5.06 - 8.77i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 5.03iT - 37T^{2} \)
41 \( 1 + (-0.940 - 2.58i)T + (-31.4 + 26.3i)T^{2} \)
43 \( 1 + (-9.34 - 1.64i)T + (40.4 + 14.7i)T^{2} \)
47 \( 1 + (4.10 + 4.88i)T + (-8.16 + 46.2i)T^{2} \)
53 \( 1 + (2.12 - 0.375i)T + (49.8 - 18.1i)T^{2} \)
59 \( 1 + (5.42 + 4.55i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.92 + 10.9i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (2.47 - 2.07i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-0.0247 + 0.140i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (-2.09 + 0.762i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-7.69 + 2.80i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (-6.01 + 3.47i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (-2.39 + 6.56i)T + (-68.1 - 57.2i)T^{2} \)
97 \( 1 + (6.02 - 7.18i)T + (-16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.01351882979967056620120656427, −10.98904766067787752936751219754, −10.38914836174159373735673202844, −9.293052675941227940314828492415, −8.067481108147108020147486007782, −6.49264462749924779933038965185, −5.28535767817485103075220009491, −4.67159627944732633823823640964, −3.15904849814800932982768436426, −1.18068813995711621585311028722, 2.56873662716317587372250597348, 4.23351687057761783047560338871, 5.42122570935344993181545166561, 6.24068062329631116072466169842, 7.41689739402520478208375103035, 8.091763602501636142800482703288, 9.592435252737956337271855091324, 10.79595030622286768030845463837, 11.83039956063136505054047948440, 12.42577009448699894654969296963

Graph of the $Z$-function along the critical line