Properties

Label 2-228-76.67-c1-0-13
Degree $2$
Conductor $228$
Sign $-0.0186 + 0.999i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.04 − 0.947i)2-s + (0.766 − 0.642i)3-s + (0.204 + 1.98i)4-s + (1.27 + 0.462i)5-s + (−1.41 − 0.0508i)6-s + (−3.79 − 2.18i)7-s + (1.66 − 2.28i)8-s + (0.173 − 0.984i)9-s + (−0.897 − 1.69i)10-s + (5.13 − 2.96i)11-s + (1.43 + 1.39i)12-s + (1.69 − 2.02i)13-s + (1.90 + 5.89i)14-s + (1.27 − 0.462i)15-s + (−3.91 + 0.815i)16-s + (0.539 + 3.05i)17-s + ⋯
L(s)  = 1  + (−0.742 − 0.669i)2-s + (0.442 − 0.371i)3-s + (0.102 + 0.994i)4-s + (0.568 + 0.207i)5-s + (−0.576 − 0.0207i)6-s + (−1.43 − 0.827i)7-s + (0.590 − 0.807i)8-s + (0.0578 − 0.328i)9-s + (−0.283 − 0.534i)10-s + (1.54 − 0.893i)11-s + (0.414 + 0.401i)12-s + (0.470 − 0.560i)13-s + (0.509 + 1.57i)14-s + (0.328 − 0.119i)15-s + (−0.978 + 0.203i)16-s + (0.130 + 0.741i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0186 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0186 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228\)    =    \(2^{2} \cdot 3 \cdot 19\)
Sign: $-0.0186 + 0.999i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{228} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 228,\ (\ :1/2),\ -0.0186 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.696788 - 0.709931i\)
\(L(\frac12)\) \(\approx\) \(0.696788 - 0.709931i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.04 + 0.947i)T \)
3 \( 1 + (-0.766 + 0.642i)T \)
19 \( 1 + (-2.06 + 3.83i)T \)
good5 \( 1 + (-1.27 - 0.462i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (3.79 + 2.18i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (-5.13 + 2.96i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.69 + 2.02i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (-0.539 - 3.05i)T + (-15.9 + 5.81i)T^{2} \)
23 \( 1 + (0.866 + 2.38i)T + (-17.6 + 14.7i)T^{2} \)
29 \( 1 + (-2.70 - 0.476i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (5.45 - 9.44i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 6.57iT - 37T^{2} \)
41 \( 1 + (-3.24 - 3.86i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (0.790 - 2.17i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (2.17 + 0.383i)T + (44.1 + 16.0i)T^{2} \)
53 \( 1 + (2.95 + 8.11i)T + (-40.6 + 34.0i)T^{2} \)
59 \( 1 + (-2.11 - 11.9i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (-5.27 + 1.91i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (0.626 - 3.55i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-2.55 - 0.928i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (-4.12 + 3.46i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (3.29 - 2.76i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-5.76 - 3.32i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-3.11 + 3.71i)T + (-15.4 - 87.6i)T^{2} \)
97 \( 1 + (11.9 - 2.10i)T + (91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95793086638454277761521821553, −10.80284221767159521982318478686, −9.977681899915983310985886037002, −9.178178334019666593161524741480, −8.307101045696072470407881249404, −6.86183053129892977999045927783, −6.34930557757524897026002571885, −3.80080593397189573122267337451, −3.04174163394892920801828557040, −1.11889088516671855719927230367, 1.98100392032488195987395453103, 3.86954091574799398172220287575, 5.59612726429829922867564990774, 6.39461541062666842323067664204, 7.45239012860853065916794244862, 8.964871909364854867274979189662, 9.519254408337916787645070848609, 9.774172395213829652007226403909, 11.40819489822698419675010558029, 12.45801938465408510551116447769

Graph of the $Z$-function along the critical line