L(s) = 1 | + (0.501 − 1.32i)2-s + (−0.5 − 0.866i)3-s + (−1.49 − 1.32i)4-s + (−0.720 − 1.24i)5-s + (−1.39 + 0.227i)6-s − 1.30i·7-s + (−2.50 + 1.31i)8-s + (−0.499 + 0.866i)9-s + (−2.01 + 0.327i)10-s + 1.29i·11-s + (−0.399 + 1.95i)12-s + (−0.106 − 0.0617i)13-s + (−1.71 − 0.651i)14-s + (−0.720 + 1.24i)15-s + (0.483 + 3.97i)16-s + (−2.80 − 4.84i)17-s + ⋯ |
L(s) = 1 | + (0.354 − 0.935i)2-s + (−0.288 − 0.499i)3-s + (−0.748 − 0.662i)4-s + (−0.322 − 0.558i)5-s + (−0.569 + 0.0926i)6-s − 0.491i·7-s + (−0.885 + 0.465i)8-s + (−0.166 + 0.288i)9-s + (−0.636 + 0.103i)10-s + 0.389i·11-s + (−0.115 + 0.565i)12-s + (−0.0296 − 0.0171i)13-s + (−0.459 − 0.174i)14-s + (−0.186 + 0.322i)15-s + (0.120 + 0.992i)16-s + (−0.679 − 1.17i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0890591 - 1.01721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0890591 - 1.01721i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.501 + 1.32i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-3.87 + 1.98i)T \) |
good | 5 | \( 1 + (0.720 + 1.24i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 1.30iT - 7T^{2} \) |
| 11 | \( 1 - 1.29iT - 11T^{2} \) |
| 13 | \( 1 + (0.106 + 0.0617i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.80 + 4.84i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.35 + 0.784i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.13 + 1.23i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 9.02T + 31T^{2} \) |
| 37 | \( 1 - 3.59iT - 37T^{2} \) |
| 41 | \( 1 + (-8.02 + 4.63i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.41 - 1.39i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.98 - 1.14i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (7.36 + 4.25i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.117 + 0.204i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.15 - 7.19i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.26 + 5.65i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.10 + 5.37i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.36 - 11.0i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.30 + 3.99i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12.5iT - 83T^{2} \) |
| 89 | \( 1 + (-8.06 - 4.65i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.61 - 3.81i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.86102524173318382735442632491, −11.08415582421324374861810100441, −9.977245940021005593957473877633, −9.034544621883951417077668133065, −7.82847301261457895530778645532, −6.58215377686509169147323802568, −5.13698188254102535610969566656, −4.29326944861234488574649287922, −2.62574342229929018343632162174, −0.822335052398757428501855899287,
3.17698703845785096685460692093, 4.31759785422604429283222705554, 5.61060649063412614546476132842, 6.41030390382841772473603618803, 7.62608858339421900601743389691, 8.614025391698572747757964638057, 9.610092536112559620935468637014, 10.81548639776979062334007307351, 11.79360507748949267440176127811, 12.72122175914455288933913869934