L(s) = 1 | + (−1.09 + 0.892i)2-s + (−0.5 + 0.866i)3-s + (0.408 − 1.95i)4-s + (0.127 − 0.220i)5-s + (−0.223 − 1.39i)6-s + 1.43i·7-s + (1.29 + 2.51i)8-s + (−0.499 − 0.866i)9-s + (0.0569 + 0.354i)10-s + 6.05i·11-s + (1.49 + 1.33i)12-s + (−0.665 + 0.384i)13-s + (−1.27 − 1.57i)14-s + (0.127 + 0.220i)15-s + (−3.66 − 1.59i)16-s + (−1.84 + 3.19i)17-s + ⋯ |
L(s) = 1 | + (−0.775 + 0.630i)2-s + (−0.288 + 0.499i)3-s + (0.204 − 0.978i)4-s + (0.0568 − 0.0984i)5-s + (−0.0914 − 0.570i)6-s + 0.542i·7-s + (0.459 + 0.888i)8-s + (−0.166 − 0.288i)9-s + (0.0179 + 0.112i)10-s + 1.82i·11-s + (0.430 + 0.384i)12-s + (−0.184 + 0.106i)13-s + (−0.342 − 0.420i)14-s + (0.0328 + 0.0568i)15-s + (−0.916 − 0.399i)16-s + (−0.447 + 0.775i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.255087 + 0.601479i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.255087 + 0.601479i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.09 - 0.892i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.741 + 4.29i)T \) |
good | 5 | \( 1 + (-0.127 + 0.220i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 1.43iT - 7T^{2} \) |
| 11 | \( 1 - 6.05iT - 11T^{2} \) |
| 13 | \( 1 + (0.665 - 0.384i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.84 - 3.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (7.31 - 4.22i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.66 + 2.69i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.97T + 31T^{2} \) |
| 37 | \( 1 - 3.75iT - 37T^{2} \) |
| 41 | \( 1 + (1.68 + 0.972i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.94 - 2.85i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.39 + 0.808i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.8 + 6.28i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.994 + 1.72i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.538 - 0.932i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.68 + 4.64i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.28 + 9.15i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.44 - 2.50i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.35 + 4.07i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 5.30iT - 83T^{2} \) |
| 89 | \( 1 + (11.0 - 6.37i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.3 - 6.57i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36805681236332600483814766411, −11.47423846074673474015552651922, −10.30982562266308651250759648584, −9.639115407839646795102447827956, −8.816399616692609676138383179656, −7.59112516807626829118655778018, −6.60954444855716357760611427683, −5.43279627219841223611245864462, −4.42973442692607569287043150902, −2.06818502426862954239175819200,
0.72016904637395250179581286384, 2.61443711624762308120584302843, 4.01258373785828858242261803425, 5.88237159740815249034494736191, 6.98695475428789824779060145269, 8.089476787083869927213331090591, 8.800745636720974401894703964682, 10.22161067925505517482303518430, 10.79852131259687427057305942459, 11.78444612354485972567087230119