L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1.22 − 2.12i)5-s − 3.44·7-s + (−0.499 + 0.866i)9-s − 2.44·11-s + (0.5 − 0.866i)13-s + (−1.22 + 2.12i)15-s + (−2.44 − 4.24i)17-s + (1 + 4.24i)19-s + (1.72 + 2.98i)21-s + (4.22 − 7.31i)23-s + (−0.499 + 0.866i)25-s + 0.999·27-s + (2.44 − 4.24i)29-s − 9.44·31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.547 − 0.948i)5-s − 1.30·7-s + (−0.166 + 0.288i)9-s − 0.738·11-s + (0.138 − 0.240i)13-s + (−0.316 + 0.547i)15-s + (−0.594 − 1.02i)17-s + (0.229 + 0.973i)19-s + (0.376 + 0.651i)21-s + (0.880 − 1.52i)23-s + (−0.0999 + 0.173i)25-s + 0.192·27-s + (0.454 − 0.787i)29-s − 1.69·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.856 + 0.516i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.856 + 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.147989 - 0.532423i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.147989 - 0.532423i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-1 - 4.24i)T \) |
good | 5 | \( 1 + (1.22 + 2.12i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 3.44T + 7T^{2} \) |
| 11 | \( 1 + 2.44T + 11T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.44 + 4.24i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-4.22 + 7.31i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.44 + 4.24i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.44T + 31T^{2} \) |
| 37 | \( 1 - 8.79T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.72 - 2.98i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.550 - 0.953i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.22 + 2.12i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.67 - 6.36i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.05 + 1.81i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.27 + 3.94i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.94 - 10.3i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.17 + 10.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 16.8T + 83T^{2} \) |
| 89 | \( 1 + (-1.77 + 3.07i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.34 + 9.26i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06556665260009257446371428325, −10.96620344738525493467801047297, −9.833242336422328866808178016073, −8.824872867938208424202919150592, −7.82409790010531962056188731439, −6.74921218838841099093251797580, −5.63090179848113766887163790309, −4.39994799330438832216427953702, −2.80636642808607201964967165860, −0.45443199118390126378249780430,
2.93335150728649033945334877980, 3.84199354696670198863612260993, 5.43746574873831591168911730382, 6.63149580114064295325483813593, 7.38825129875892642756158410757, 8.920898863990766317912420989497, 9.805809131960012047621851744680, 10.86489111296415438464868511636, 11.29534099761567027516651708160, 12.73239152784286069516796074703