Properties

Label 2-228-57.56-c1-0-4
Degree $2$
Conductor $228$
Sign $0.397 + 0.917i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s + 4·7-s − 2.99·9-s − 6.92i·13-s + (−4 + 1.73i)19-s − 6.92i·21-s + 5·25-s + 5.19i·27-s + 10.3i·31-s + 6.92i·37-s − 11.9·39-s + 8·43-s + 9·49-s + (2.99 + 6.92i)57-s − 14·61-s + ⋯
L(s)  = 1  − 0.999i·3-s + 1.51·7-s − 0.999·9-s − 1.92i·13-s + (−0.917 + 0.397i)19-s − 1.51i·21-s + 25-s + 0.999i·27-s + 1.86i·31-s + 1.13i·37-s − 1.92·39-s + 1.21·43-s + 1.28·49-s + (0.397 + 0.917i)57-s − 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.397 + 0.917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.397 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228\)    =    \(2^{2} \cdot 3 \cdot 19\)
Sign: $0.397 + 0.917i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{228} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 228,\ (\ :1/2),\ 0.397 + 0.917i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.10822 - 0.727782i\)
\(L(\frac12)\) \(\approx\) \(1.10822 - 0.727782i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
19 \( 1 + (4 - 1.73i)T \)
good5 \( 1 - 5T^{2} \)
7 \( 1 - 4T + 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 6.92iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 10.3iT - 31T^{2} \)
37 \( 1 - 6.92iT - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 14T + 61T^{2} \)
67 \( 1 - 3.46iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 10T + 73T^{2} \)
79 \( 1 - 17.3iT - 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 13.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24304710224469179937119681422, −11.06586105635352166972471701874, −10.46569545040292379757921209993, −8.605968145022203165711821729466, −8.135402967216230923227603521132, −7.17703168599420294922936329146, −5.83614202168839100570342329163, −4.86026917588330792405449170020, −2.90592268459195561072923380780, −1.32745434870578809050888299030, 2.16990204724565111369613215422, 4.18015746641487345064874672619, 4.72859829669911814153244487782, 6.10368085663466887739813171474, 7.54718937664246696155688095968, 8.742067627107389086516496909394, 9.312495513835628673184773541847, 10.72782135161482387801569156565, 11.24026530167860742716111213154, 12.05146778393458729062899157995

Graph of the $Z$-function along the critical line