L(s) = 1 | + (−1.13 + 0.841i)2-s + (0.0680 − 1.73i)3-s + (0.583 − 1.91i)4-s − 1.36i·5-s + (1.37 + 2.02i)6-s − 1.12i·7-s + (0.946 + 2.66i)8-s + (−2.99 − 0.235i)9-s + (1.15 + 1.55i)10-s − 3.43·11-s + (−3.27 − 1.13i)12-s − 0.802·13-s + (0.950 + 1.28i)14-s + (−2.36 − 0.0930i)15-s + (−3.31 − 2.23i)16-s − 5.04i·17-s + ⋯ |
L(s) = 1 | + (−0.803 + 0.595i)2-s + (0.0392 − 0.999i)3-s + (0.291 − 0.956i)4-s − 0.611i·5-s + (0.563 + 0.826i)6-s − 0.426i·7-s + (0.334 + 0.942i)8-s + (−0.996 − 0.0784i)9-s + (0.364 + 0.491i)10-s − 1.03·11-s + (−0.944 − 0.329i)12-s − 0.222·13-s + (0.254 + 0.343i)14-s + (−0.611 − 0.0240i)15-s + (−0.829 − 0.558i)16-s − 1.22i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.378382 - 0.532561i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.378382 - 0.532561i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 - 0.841i)T \) |
| 3 | \( 1 + (-0.0680 + 1.73i)T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + 1.36iT - 5T^{2} \) |
| 7 | \( 1 + 1.12iT - 7T^{2} \) |
| 11 | \( 1 + 3.43T + 11T^{2} \) |
| 13 | \( 1 + 0.802T + 13T^{2} \) |
| 17 | \( 1 + 5.04iT - 17T^{2} \) |
| 23 | \( 1 + 0.107T + 23T^{2} \) |
| 29 | \( 1 + 2.28iT - 29T^{2} \) |
| 31 | \( 1 + 6.32iT - 31T^{2} \) |
| 37 | \( 1 - 4.86T + 37T^{2} \) |
| 41 | \( 1 + 7.80iT - 41T^{2} \) |
| 43 | \( 1 - 4.40iT - 43T^{2} \) |
| 47 | \( 1 + 5.92T + 47T^{2} \) |
| 53 | \( 1 - 7.95iT - 53T^{2} \) |
| 59 | \( 1 - 14.9T + 59T^{2} \) |
| 61 | \( 1 + 11.9T + 61T^{2} \) |
| 67 | \( 1 - 8.03iT - 67T^{2} \) |
| 71 | \( 1 - 15.4T + 71T^{2} \) |
| 73 | \( 1 + 0.852T + 73T^{2} \) |
| 79 | \( 1 + 9.56iT - 79T^{2} \) |
| 83 | \( 1 - 6.54T + 83T^{2} \) |
| 89 | \( 1 + 4.58iT - 89T^{2} \) |
| 97 | \( 1 - 15.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87662385498401566099425443862, −10.92347297995573105232213568466, −9.773693763882164746772212330913, −8.770829802751794304468344985653, −7.80143474391649552503024178712, −7.21351392778846472557997277153, −5.95885625965512035214573085139, −4.92928110859036014470121151146, −2.44553573145140510258855274452, −0.67916512434894011780184259685,
2.50036762354526838628886003030, 3.54418352768096348626023436760, 5.03878835552149433253401145524, 6.53628046015443135135416569930, 7.956499062586749893334477136203, 8.740156271341420351565172172680, 9.816588596289697548630120268342, 10.56823375395670733698943677901, 11.11255319915670173021769076011, 12.25427122147308426424970513921