L(s) = 1 | + (0.474 − 1.33i)2-s + (1.60 − 0.658i)3-s + (−1.54 − 1.26i)4-s − 0.191i·5-s + (−0.116 − 2.44i)6-s − 0.733i·7-s + (−2.41 + 1.46i)8-s + (2.13 − 2.10i)9-s + (−0.255 − 0.0910i)10-s − 2.95·11-s + (−3.31 − 1.00i)12-s + 4.31·13-s + (−0.977 − 0.348i)14-s + (−0.126 − 0.307i)15-s + (0.802 + 3.91i)16-s + 1.98i·17-s + ⋯ |
L(s) = 1 | + (0.335 − 0.942i)2-s + (0.924 − 0.379i)3-s + (−0.774 − 0.632i)4-s − 0.0857i·5-s + (−0.0475 − 0.998i)6-s − 0.277i·7-s + (−0.855 + 0.517i)8-s + (0.711 − 0.702i)9-s + (−0.0808 − 0.0287i)10-s − 0.891·11-s + (−0.956 − 0.290i)12-s + 1.19·13-s + (−0.261 − 0.0930i)14-s + (−0.0326 − 0.0793i)15-s + (0.200 + 0.979i)16-s + 0.481i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.290 + 0.956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.290 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02699 - 1.38490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02699 - 1.38490i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.474 + 1.33i)T \) |
| 3 | \( 1 + (-1.60 + 0.658i)T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + 0.191iT - 5T^{2} \) |
| 7 | \( 1 + 0.733iT - 7T^{2} \) |
| 11 | \( 1 + 2.95T + 11T^{2} \) |
| 13 | \( 1 - 4.31T + 13T^{2} \) |
| 17 | \( 1 - 1.98iT - 17T^{2} \) |
| 23 | \( 1 + 2.69T + 23T^{2} \) |
| 29 | \( 1 - 8.26iT - 29T^{2} \) |
| 31 | \( 1 - 4.66iT - 31T^{2} \) |
| 37 | \( 1 + 5.08T + 37T^{2} \) |
| 41 | \( 1 + 6.49iT - 41T^{2} \) |
| 43 | \( 1 + 4.65iT - 43T^{2} \) |
| 47 | \( 1 + 6.14T + 47T^{2} \) |
| 53 | \( 1 - 7.35iT - 53T^{2} \) |
| 59 | \( 1 - 9.63T + 59T^{2} \) |
| 61 | \( 1 + 1.98T + 61T^{2} \) |
| 67 | \( 1 + 0.0795iT - 67T^{2} \) |
| 71 | \( 1 + 8.52T + 71T^{2} \) |
| 73 | \( 1 + 5.26T + 73T^{2} \) |
| 79 | \( 1 - 15.3iT - 79T^{2} \) |
| 83 | \( 1 - 0.0511T + 83T^{2} \) |
| 89 | \( 1 + 10.6iT - 89T^{2} \) |
| 97 | \( 1 + 12.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.23122334328957464396899918946, −10.80603213963432935609163937716, −10.25693285174306694989443834541, −8.898871345366003621422904990900, −8.367372486397236108982196902281, −6.92726910436287735363769066592, −5.48455166672264755441050643104, −4.01547688137618759979793324941, −3.01630626190077579406366852757, −1.50455020300490086504067496198,
2.78739281109130223670597736834, 4.03258817219784711603010282280, 5.19517948186230683657244127707, 6.43638714390249742905388991394, 7.71987372770223469062886032834, 8.381999943490089993646925119758, 9.305200873304826996044280709490, 10.31710448851541041812154984194, 11.65538417593760157663076635605, 13.13848108689244898502028661768