L(s) = 1 | + (0.221 − 1.39i)2-s + (0.958 + 1.44i)3-s + (−1.90 − 0.619i)4-s + 3.67i·5-s + (2.22 − 1.01i)6-s − 1.73i·7-s + (−1.28 + 2.51i)8-s + (−1.16 + 2.76i)9-s + (5.13 + 0.814i)10-s + 5.81·11-s + (−0.929 − 3.33i)12-s − 0.320·13-s + (−2.41 − 0.383i)14-s + (−5.29 + 3.52i)15-s + (3.23 + 2.35i)16-s + 1.14i·17-s + ⋯ |
L(s) = 1 | + (0.156 − 0.987i)2-s + (0.553 + 0.832i)3-s + (−0.950 − 0.309i)4-s + 1.64i·5-s + (0.909 − 0.416i)6-s − 0.653i·7-s + (−0.454 + 0.890i)8-s + (−0.387 + 0.922i)9-s + (1.62 + 0.257i)10-s + 1.75·11-s + (−0.268 − 0.963i)12-s − 0.0888·13-s + (−0.645 − 0.102i)14-s + (−1.36 + 0.909i)15-s + (0.808 + 0.588i)16-s + 0.278i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.268i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.963 - 0.268i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42920 + 0.195383i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42920 + 0.195383i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.221 + 1.39i)T \) |
| 3 | \( 1 + (-0.958 - 1.44i)T \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 - 3.67iT - 5T^{2} \) |
| 7 | \( 1 + 1.73iT - 7T^{2} \) |
| 11 | \( 1 - 5.81T + 11T^{2} \) |
| 13 | \( 1 + 0.320T + 13T^{2} \) |
| 17 | \( 1 - 1.14iT - 17T^{2} \) |
| 23 | \( 1 + 2.06T + 23T^{2} \) |
| 29 | \( 1 + 7.38iT - 29T^{2} \) |
| 31 | \( 1 + 6.00iT - 31T^{2} \) |
| 37 | \( 1 + 5.56T + 37T^{2} \) |
| 41 | \( 1 - 4.66iT - 41T^{2} \) |
| 43 | \( 1 + 11.9iT - 43T^{2} \) |
| 47 | \( 1 - 2.44T + 47T^{2} \) |
| 53 | \( 1 - 3.33iT - 53T^{2} \) |
| 59 | \( 1 - 3.98T + 59T^{2} \) |
| 61 | \( 1 - 8.88T + 61T^{2} \) |
| 67 | \( 1 - 6.97iT - 67T^{2} \) |
| 71 | \( 1 + 13.3T + 71T^{2} \) |
| 73 | \( 1 - 3.33T + 73T^{2} \) |
| 79 | \( 1 - 4.89iT - 79T^{2} \) |
| 83 | \( 1 - 1.65T + 83T^{2} \) |
| 89 | \( 1 + 8.78iT - 89T^{2} \) |
| 97 | \( 1 - 3.03T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82049486186858785449949091464, −11.21997029495385624942350156045, −10.29664111441949456518526018195, −9.784405350302589900592338909830, −8.684567807200179044121621886387, −7.30130654755911140855292379379, −6.01373875306534391499877206798, −4.14902596879585488249070219425, −3.62656181170971184509657365444, −2.30340842372381552734900607726,
1.31582774282553976503663384065, 3.72424927887596454800658966457, 5.02040661520862565400419377539, 6.11968676006249319085385483899, 7.14230713842623159474434425420, 8.420615860233018850275074058612, 8.873135747374596451418934642323, 9.497372179337380837275081438514, 11.98116893028802541011043515733, 12.29209591391003131204499963374