L(s) = 1 | + (−0.474 − 1.33i)2-s + (−1.60 + 0.658i)3-s + (−1.54 + 1.26i)4-s − 0.191i·5-s + (1.63 + 1.82i)6-s + 0.733i·7-s + (2.41 + 1.46i)8-s + (2.13 − 2.10i)9-s + (−0.255 + 0.0910i)10-s + 2.95·11-s + (1.65 − 3.04i)12-s + 4.31·13-s + (0.977 − 0.348i)14-s + (0.126 + 0.307i)15-s + (0.802 − 3.91i)16-s + 1.98i·17-s + ⋯ |
L(s) = 1 | + (−0.335 − 0.942i)2-s + (−0.924 + 0.379i)3-s + (−0.774 + 0.632i)4-s − 0.0857i·5-s + (0.668 + 0.743i)6-s + 0.277i·7-s + (0.855 + 0.517i)8-s + (0.711 − 0.702i)9-s + (−0.0808 + 0.0287i)10-s + 0.891·11-s + (0.476 − 0.879i)12-s + 1.19·13-s + (0.261 − 0.0930i)14-s + (0.0326 + 0.0793i)15-s + (0.200 − 0.979i)16-s + 0.481i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.769799 - 0.195161i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.769799 - 0.195161i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.474 + 1.33i)T \) |
| 3 | \( 1 + (1.60 - 0.658i)T \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 0.191iT - 5T^{2} \) |
| 7 | \( 1 - 0.733iT - 7T^{2} \) |
| 11 | \( 1 - 2.95T + 11T^{2} \) |
| 13 | \( 1 - 4.31T + 13T^{2} \) |
| 17 | \( 1 - 1.98iT - 17T^{2} \) |
| 23 | \( 1 - 2.69T + 23T^{2} \) |
| 29 | \( 1 - 8.26iT - 29T^{2} \) |
| 31 | \( 1 + 4.66iT - 31T^{2} \) |
| 37 | \( 1 + 5.08T + 37T^{2} \) |
| 41 | \( 1 + 6.49iT - 41T^{2} \) |
| 43 | \( 1 - 4.65iT - 43T^{2} \) |
| 47 | \( 1 - 6.14T + 47T^{2} \) |
| 53 | \( 1 - 7.35iT - 53T^{2} \) |
| 59 | \( 1 + 9.63T + 59T^{2} \) |
| 61 | \( 1 + 1.98T + 61T^{2} \) |
| 67 | \( 1 - 0.0795iT - 67T^{2} \) |
| 71 | \( 1 - 8.52T + 71T^{2} \) |
| 73 | \( 1 + 5.26T + 73T^{2} \) |
| 79 | \( 1 + 15.3iT - 79T^{2} \) |
| 83 | \( 1 + 0.0511T + 83T^{2} \) |
| 89 | \( 1 + 10.6iT - 89T^{2} \) |
| 97 | \( 1 + 12.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.04535765248717317813596559286, −10.99318801456669803166302050532, −10.61222006958280298255445083361, −9.251896623453859043164950837949, −8.724242863553672346765994493930, −7.06438038202703635654049990225, −5.80026813566702498181947361916, −4.52679797963646835777321516947, −3.44394989685410910375825219434, −1.28125149783628628032595739781,
1.12767701134980973463576558141, 4.07663189997252852320034619886, 5.31106229746218515436430058283, 6.38844222934476913406470044144, 6.99994256820501244196536075058, 8.187113826780321927231354307404, 9.250545279358042928718564338779, 10.40709194077005974897188473689, 11.20003539337803576015970326986, 12.31816571706316853576854705242