L(s) = 1 | + (−0.557 − 1.29i)2-s + (1.17 + 1.27i)3-s + (−1.37 + 1.44i)4-s − 3.63i·5-s + (0.999 − 2.23i)6-s − 2.62i·7-s + (2.65 + 0.986i)8-s + (−0.237 + 2.99i)9-s + (−4.72 + 2.02i)10-s − 0.651·11-s + (−3.46 − 0.0534i)12-s + 2.40·13-s + (−3.41 + 1.46i)14-s + (4.62 − 4.26i)15-s + (−0.194 − 3.99i)16-s − 6.69i·17-s + ⋯ |
L(s) = 1 | + (−0.393 − 0.919i)2-s + (0.678 + 0.734i)3-s + (−0.689 + 0.724i)4-s − 1.62i·5-s + (0.408 − 0.912i)6-s − 0.993i·7-s + (0.937 + 0.348i)8-s + (−0.0793 + 0.996i)9-s + (−1.49 + 0.639i)10-s − 0.196·11-s + (−0.999 − 0.0154i)12-s + 0.667·13-s + (−0.912 + 0.391i)14-s + (1.19 − 1.10i)15-s + (−0.0485 − 0.998i)16-s − 1.62i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0154 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0154 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.812026 - 0.824649i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.812026 - 0.824649i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.557 + 1.29i)T \) |
| 3 | \( 1 + (-1.17 - 1.27i)T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + 3.63iT - 5T^{2} \) |
| 7 | \( 1 + 2.62iT - 7T^{2} \) |
| 11 | \( 1 + 0.651T + 11T^{2} \) |
| 13 | \( 1 - 2.40T + 13T^{2} \) |
| 17 | \( 1 + 6.69iT - 17T^{2} \) |
| 23 | \( 1 - 4.11T + 23T^{2} \) |
| 29 | \( 1 + 0.639iT - 29T^{2} \) |
| 31 | \( 1 - 9.21iT - 31T^{2} \) |
| 37 | \( 1 - 4.79T + 37T^{2} \) |
| 41 | \( 1 - 10.7iT - 41T^{2} \) |
| 43 | \( 1 - 1.99iT - 43T^{2} \) |
| 47 | \( 1 + 5.91T + 47T^{2} \) |
| 53 | \( 1 - 3.35iT - 53T^{2} \) |
| 59 | \( 1 + 3.51T + 59T^{2} \) |
| 61 | \( 1 - 3.79T + 61T^{2} \) |
| 67 | \( 1 - 11.0iT - 67T^{2} \) |
| 71 | \( 1 + 6.24T + 71T^{2} \) |
| 73 | \( 1 + 3.88T + 73T^{2} \) |
| 79 | \( 1 + 13.6iT - 79T^{2} \) |
| 83 | \( 1 - 10.0T + 83T^{2} \) |
| 89 | \( 1 - 2.37iT - 89T^{2} \) |
| 97 | \( 1 - 15.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85647521515441533857997204112, −10.89616005351884288560522346029, −9.895303892283546264343211065119, −9.157556346440964443278440535201, −8.438702882499054745125638022016, −7.49698330486657944102629063969, −5.01376040864055121875637962118, −4.42321094597526111749573273775, −3.13928164173524436663860974872, −1.16541733784491683311996506755,
2.19247446620385574408351066718, 3.65417358337376181824181179638, 5.87264887009614849202624214256, 6.46445208965844521717745747714, 7.46592560788719876346341285803, 8.340494693940344107960930829182, 9.243796425404653081671969391897, 10.40458761949714256391030147843, 11.34248613290534663790338379521, 12.77512332401449658431640410808