Properties

Label 2-228-12.11-c1-0-20
Degree $2$
Conductor $228$
Sign $0.982 - 0.185i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.791 + 1.17i)2-s + (1.69 + 0.337i)3-s + (−0.747 − 1.85i)4-s − 0.951i·5-s + (−1.73 + 1.72i)6-s − 4.82i·7-s + (2.76 + 0.592i)8-s + (2.77 + 1.14i)9-s + (1.11 + 0.752i)10-s + 3.58·11-s + (−0.643 − 3.40i)12-s − 2.89·13-s + (5.65 + 3.81i)14-s + (0.320 − 1.61i)15-s + (−2.88 + 2.77i)16-s + 3.29i·17-s + ⋯
L(s)  = 1  + (−0.559 + 0.828i)2-s + (0.980 + 0.194i)3-s + (−0.373 − 0.927i)4-s − 0.425i·5-s + (−0.710 + 0.703i)6-s − 1.82i·7-s + (0.977 + 0.209i)8-s + (0.924 + 0.381i)9-s + (0.352 + 0.238i)10-s + 1.08·11-s + (−0.185 − 0.982i)12-s − 0.801·13-s + (1.51 + 1.02i)14-s + (0.0827 − 0.417i)15-s + (−0.720 + 0.692i)16-s + 0.799i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.185i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 - 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(228\)    =    \(2^{2} \cdot 3 \cdot 19\)
Sign: $0.982 - 0.185i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{228} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 228,\ (\ :1/2),\ 0.982 - 0.185i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.25041 + 0.117209i\)
\(L(\frac12)\) \(\approx\) \(1.25041 + 0.117209i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.791 - 1.17i)T \)
3 \( 1 + (-1.69 - 0.337i)T \)
19 \( 1 + iT \)
good5 \( 1 + 0.951iT - 5T^{2} \)
7 \( 1 + 4.82iT - 7T^{2} \)
11 \( 1 - 3.58T + 11T^{2} \)
13 \( 1 + 2.89T + 13T^{2} \)
17 \( 1 - 3.29iT - 17T^{2} \)
23 \( 1 + 8.68T + 23T^{2} \)
29 \( 1 - 5.48iT - 29T^{2} \)
31 \( 1 - 6.59iT - 31T^{2} \)
37 \( 1 - 8.68T + 37T^{2} \)
41 \( 1 + 0.964iT - 41T^{2} \)
43 \( 1 + 3.20iT - 43T^{2} \)
47 \( 1 + 0.581T + 47T^{2} \)
53 \( 1 - 1.07iT - 53T^{2} \)
59 \( 1 + 4.73T + 59T^{2} \)
61 \( 1 + 5.55T + 61T^{2} \)
67 \( 1 + 2.99iT - 67T^{2} \)
71 \( 1 - 4.79T + 71T^{2} \)
73 \( 1 + 1.18T + 73T^{2} \)
79 \( 1 - 0.0661iT - 79T^{2} \)
83 \( 1 + 8.75T + 83T^{2} \)
89 \( 1 - 6.42iT - 89T^{2} \)
97 \( 1 + 0.00303T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52109652818732583413934332794, −10.76493190049595898907490649353, −10.07280138158024637987051879270, −9.227950142279514445127019767215, −8.225393714737852125077030734101, −7.38889225039192374220212283628, −6.56634077364021726399119205635, −4.69216244696804786484257814114, −3.88201173190132337944465568994, −1.38652383815369799771666444942, 2.09830196556017145879041105091, 2.88700093335526346165265707600, 4.33799250671612049679268714205, 6.21711727354873641744258583326, 7.60791991401516563370483519160, 8.472992057673771875168331047460, 9.452025885655301005473430892943, 9.786366072202062128358049804358, 11.51753038660928176086480993697, 12.03633697130574837754379182433

Graph of the $Z$-function along the critical line