Properties

Label 2-227-1.1-c1-0-7
Degree $2$
Conductor $227$
Sign $1$
Analytic cond. $1.81260$
Root an. cond. $1.34632$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.44·2-s + 2.93·3-s + 0.0803·4-s + 3.90·5-s − 4.23·6-s − 1.48·7-s + 2.76·8-s + 5.62·9-s − 5.62·10-s − 4.53·11-s + 0.236·12-s − 2.23·13-s + 2.14·14-s + 11.4·15-s − 4.15·16-s + 1.30·17-s − 8.11·18-s − 1.58·19-s + 0.313·20-s − 4.37·21-s + 6.53·22-s − 7.42·23-s + 8.13·24-s + 10.2·25-s + 3.22·26-s + 7.72·27-s − 0.119·28-s + ⋯
L(s)  = 1  − 1.01·2-s + 1.69·3-s + 0.0401·4-s + 1.74·5-s − 1.72·6-s − 0.563·7-s + 0.978·8-s + 1.87·9-s − 1.77·10-s − 1.36·11-s + 0.0681·12-s − 0.620·13-s + 0.574·14-s + 2.95·15-s − 1.03·16-s + 0.316·17-s − 1.91·18-s − 0.364·19-s + 0.0701·20-s − 0.954·21-s + 1.39·22-s − 1.54·23-s + 1.66·24-s + 2.04·25-s + 0.632·26-s + 1.48·27-s − 0.0226·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 227 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 227 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(227\)
Sign: $1$
Analytic conductor: \(1.81260\)
Root analytic conductor: \(1.34632\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 227,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.344677667\)
\(L(\frac12)\) \(\approx\) \(1.344677667\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad227 \( 1 - T \)
good2 \( 1 + 1.44T + 2T^{2} \)
3 \( 1 - 2.93T + 3T^{2} \)
5 \( 1 - 3.90T + 5T^{2} \)
7 \( 1 + 1.48T + 7T^{2} \)
11 \( 1 + 4.53T + 11T^{2} \)
13 \( 1 + 2.23T + 13T^{2} \)
17 \( 1 - 1.30T + 17T^{2} \)
19 \( 1 + 1.58T + 19T^{2} \)
23 \( 1 + 7.42T + 23T^{2} \)
29 \( 1 - 3.85T + 29T^{2} \)
31 \( 1 - 5.84T + 31T^{2} \)
37 \( 1 - 10.9T + 37T^{2} \)
41 \( 1 + 2.46T + 41T^{2} \)
43 \( 1 + 4.58T + 43T^{2} \)
47 \( 1 + 10.0T + 47T^{2} \)
53 \( 1 + 2.47T + 53T^{2} \)
59 \( 1 + 6.01T + 59T^{2} \)
61 \( 1 + 10.3T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 - 5.60T + 71T^{2} \)
73 \( 1 + 10.0T + 73T^{2} \)
79 \( 1 - 6.91T + 79T^{2} \)
83 \( 1 - 7.01T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 + 12.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72443317259840046065002796900, −10.43363694504084263312317806497, −9.784244502351739281238238310929, −9.581173155632292195309662994305, −8.365389772791061972000585728041, −7.79898261820255068575189271410, −6.37093240417619253879569313507, −4.77891714102536240696058825284, −2.84752772241843606094122912147, −1.93549336538828092950008409826, 1.93549336538828092950008409826, 2.84752772241843606094122912147, 4.77891714102536240696058825284, 6.37093240417619253879569313507, 7.79898261820255068575189271410, 8.365389772791061972000585728041, 9.581173155632292195309662994305, 9.784244502351739281238238310929, 10.43363694504084263312317806497, 12.72443317259840046065002796900

Graph of the $Z$-function along the critical line