L(s) = 1 | + (2 − 1.73i)7-s + (−1.5 + 0.866i)13-s − 8.66i·19-s + (2.5 − 4.33i)25-s + (−9 + 5.19i)31-s + 37-s + (4 − 6.92i)43-s + (1.00 − 6.92i)49-s + (7.5 + 4.33i)61-s + (−5.5 − 9.52i)67-s + 1.73i·73-s + (6.5 − 11.2i)79-s + (−1.50 + 4.33i)91-s + (−16.5 − 9.52i)97-s + (−16.5 + 9.52i)103-s + ⋯ |
L(s) = 1 | + (0.755 − 0.654i)7-s + (−0.416 + 0.240i)13-s − 1.98i·19-s + (0.5 − 0.866i)25-s + (−1.61 + 0.933i)31-s + 0.164·37-s + (0.609 − 1.05i)43-s + (0.142 − 0.989i)49-s + (0.960 + 0.554i)61-s + (−0.671 − 1.16i)67-s + 0.202i·73-s + (0.731 − 1.26i)79-s + (−0.157 + 0.453i)91-s + (−1.67 − 0.967i)97-s + (−1.62 + 0.938i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0155 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0155 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.559651328\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.559651328\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
good | 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.5 - 0.866i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 8.66iT - 19T^{2} \) |
| 23 | \( 1 + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (9 - 5.19i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.5 - 4.33i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 + (-6.5 + 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (16.5 + 9.52i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.876609393762842801708941162212, −8.058591577841296844896059246569, −7.12119035389214165640408718479, −6.82824316388377831053822748708, −5.50574558097363266176893818596, −4.79553712772513149935643037734, −4.09962165014308593599537602616, −2.92199407609548793006755924537, −1.88349680519783998838227727060, −0.54459385875799486262768981193,
1.40258669156789020295432180216, 2.33958643739715296745029178274, 3.49081813135816885939045537244, 4.39482547467703296118627195461, 5.48134602866110470966231110422, 5.78818784945066624681164625895, 6.99701297045068367672881413887, 7.83403709587226284804162897743, 8.290516287761940316948285894917, 9.271998846550103101975878626562