L(s) = 1 | + (0.5 − 2.59i)7-s + (1.5 − 0.866i)13-s + 8.66i·19-s + (2.5 − 4.33i)25-s + (9 − 5.19i)31-s + 37-s + (4 − 6.92i)43-s + (−6.5 − 2.59i)49-s + (−7.5 − 4.33i)61-s + (−5.5 − 9.52i)67-s − 1.73i·73-s + (6.5 − 11.2i)79-s + (−1.5 − 4.33i)91-s + (16.5 + 9.52i)97-s + (16.5 − 9.52i)103-s + ⋯ |
L(s) = 1 | + (0.188 − 0.981i)7-s + (0.416 − 0.240i)13-s + 1.98i·19-s + (0.5 − 0.866i)25-s + (1.61 − 0.933i)31-s + 0.164·37-s + (0.609 − 1.05i)43-s + (−0.928 − 0.371i)49-s + (−0.960 − 0.554i)61-s + (−0.671 − 1.16i)67-s − 0.202i·73-s + (0.731 − 1.26i)79-s + (−0.157 − 0.453i)91-s + (1.67 + 0.967i)97-s + (1.62 − 0.938i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 + 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.630 + 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.800930228\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.800930228\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
good | 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.5 + 0.866i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 8.66iT - 19T^{2} \) |
| 23 | \( 1 + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-9 + 5.19i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.5 + 4.33i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 + (-6.5 + 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (-16.5 - 9.52i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.816461954399482816526542109352, −7.977926946483047116697374987659, −7.60180260246159955692598488342, −6.45475002832406033965570038753, −5.95103662025693935911652799337, −4.77873509028592972501557530030, −4.04414834191013381453118875332, −3.23142853138586706696554153105, −1.90042347101419496517922453147, −0.73437428858594037551216184151,
1.13158635465035578929384526109, 2.46893187669859520433949196678, 3.14281811639296592433677437549, 4.50837833703573721072753568677, 5.07074140562705290133021837929, 6.05344493236716187471932821006, 6.74191425909987842746220278727, 7.58884737148203376123949510851, 8.614880188907827938813873798234, 8.957845594041777441685976503606