L(s) = 1 | + (−0.385 − 0.667i)5-s + (2.37 + 1.17i)7-s + (−4.68 − 2.70i)11-s + (4.57 + 2.64i)13-s + (2.85 + 4.94i)17-s + (0.535 + 0.309i)19-s + (−5.83 + 3.37i)23-s + (2.20 − 3.81i)25-s + (6.99 − 4.03i)29-s + 0.580i·31-s + (−0.129 − 2.03i)35-s + (−4.53 + 7.86i)37-s + (−4.29 + 7.44i)41-s + (−1.70 − 2.94i)43-s + 0.770·47-s + ⋯ |
L(s) = 1 | + (−0.172 − 0.298i)5-s + (0.895 + 0.444i)7-s + (−1.41 − 0.814i)11-s + (1.26 + 0.732i)13-s + (0.692 + 1.19i)17-s + (0.122 + 0.0709i)19-s + (−1.21 + 0.702i)23-s + (0.440 − 0.763i)25-s + (1.29 − 0.749i)29-s + 0.104i·31-s + (−0.0218 − 0.344i)35-s + (−0.746 + 1.29i)37-s + (−0.670 + 1.16i)41-s + (−0.259 − 0.449i)43-s + 0.112·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.810666050\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.810666050\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.37 - 1.17i)T \) |
good | 5 | \( 1 + (0.385 + 0.667i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (4.68 + 2.70i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.57 - 2.64i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.85 - 4.94i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.535 - 0.309i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.83 - 3.37i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.99 + 4.03i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.580iT - 31T^{2} \) |
| 37 | \( 1 + (4.53 - 7.86i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.29 - 7.44i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.70 + 2.94i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 0.770T + 47T^{2} \) |
| 53 | \( 1 + (-6.63 + 3.83i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 13.7T + 59T^{2} \) |
| 61 | \( 1 - 4.12iT - 61T^{2} \) |
| 67 | \( 1 - 13.5T + 67T^{2} \) |
| 71 | \( 1 - 2.25iT - 71T^{2} \) |
| 73 | \( 1 + (-1.96 + 1.13i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 8.07T + 79T^{2} \) |
| 83 | \( 1 + (1.92 + 3.33i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.59 - 4.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-12.1 + 7.01i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.712369697770468648307605046224, −8.194449803857640708416090879362, −8.085252063764047482695225968479, −6.64612868087001952165370469431, −5.85668427555210285440171392142, −5.23329730009115779964803244720, −4.26765675617753195802291901917, −3.37967119581666645822548364037, −2.19977714627142705693705814871, −1.12363661231682330653699654504,
0.73614468930319055385945416149, 2.09895984866289718289004328597, 3.11090167479444745975851528388, 4.07321230336455475201153217192, 5.13699230744062876311225127221, 5.50538138340386016268399903213, 6.86034334825294001838704812023, 7.43056814477633471950060931463, 8.143471650696307143434904204972, 8.705064468105809902413034963617